×

Schubert calculus via fermionic variables. (English) Zbl 07854600

Summary: Imanishi, Jinzenji and Kuwata provided a recipe for computing Euler number of Grassmann manifold \(G(k,N)\) using physical model and its path-integral [S. Imanishi, M. Jinzenji and K. Kuwata, Journal of Geometry and Physics, Volume 180, October 2022, 104623]. They demonstrated that the cohomology ring of \(G(k,N)\) is represented by fermionic variables. In this study, using only fermionic variables, we computed an integral of the Chern classes of the dual bundle of the tautological bundle on \(G(k,N)\). In other words, the intersection number of the Schubert cycles is obtained using the fermion integral.

MSC:

81Q60 Supersymmetry and quantum mechanics
53C07 Special connections and metrics on vector bundles (Hermite-Einstein, Yang-Mills)
14M15 Grassmannians, Schubert varieties, flag manifolds
81V74 Fermionic systems in quantum theory
14F42 Motivic cohomology; motivic homotopy theory

References:

[1] R. Bott and L. W. Tu. Differential Forms in Algebraic Topology. Graduate Texts in Mathematics. Springer New York, NY, 1982. · Zbl 0496.55001
[2] N. Chair. Intersection numbers on Grassmannians, and on the space of holomorphic maps from \[CP^1\] into \[G_r\left(C^n\right)\]. J. Geom. Phys., 38(2):170-182, 2001. DOI:, URL:https://doi.org/10.1016/S0393-0440(00)00059-0. . Digital Object Identifier: 10.1016/S0393-0440(00)00059-0 Google Scholar: Lookup Link arXiv: hep-th/9808170 · Zbl 1018.32015 · doi:10.1016/S0393-0440(00)00059-0
[3] W. Fulton. Intersection Theory. Springer-Verlag Berlin Hidelberg, 1998. · Zbl 0885.14002
[4] P. Griffiths and J. Harris. Principles of algebraic geometry. Pure and Applied Mathematics. Wiley-Interscience, New York, 1978. · Zbl 0408.14001
[5] D. T. Hiep. Identities involving (doubly) symmetric polynomials and integrals over Grassmannians, 2016. arXiv, DOI: URL: https://arxiv.org/abs/1607.04850. Digital Object Identifier: 10.48550/ARXIV.1607.04850 Google Scholar: Lookup Link · doi:10.48550/ARXIV.1607.04850
[6] T. Ikeda and H. Naruse. Modern Schubert calculus, from the special polynomial theory’s point of view (in Japanese). Sugaku, 63(3):313-337, 2011. DOI:, URL:https://doi.org/10.11429/sugaku.0633313. Digital Object Identifier: 10.11429/sugaku.0633313 Google Scholar: Lookup Link · doi:10.11429/sugaku.0633313
[7] S. Imanishi. Computation of Euler number for the Grassmann manifold \[G\left(2,N\right)\] via Mathai-Quillen formalism (in Japanese). Master’s thesis, Hokkaido University, 2019.
[8] S. Imanishi, M. Jinzenji, and K. Kuwata. Evaluation of Euler number of complex Grassmann manifold \[G\left(k,N\right)\] via Mathai-Quillen formalism. Journal of Geometry and Physics, 180:104623, 2022. DOI:. Digital Object Identifier: https://doi.org/10.1016/j.geomphys.2022.104623 Google Scholar: Lookup Link · Zbl 1502.81037 · doi:10.1016/j.geomphys.2022.104623
[9] A. Weber. Equivariant Chern classes and localization theorem. J. Singul., 5:153-176, 2012. DOI:, URL: https://doi.org/10.5427/jsing.2012.5k. . Digital Object Identifier: 10.5427/jsing.2012.5k Google Scholar: Lookup Link arXiv: 1110.5515 · Zbl 1292.14009 · doi:10.5427/jsing.2012.5k
[10] E. Witten. The Verlinde algebra and the cohomology of the Grassmannian. In Geometry, topology, & physics, Conf. Proc. Lecture Notes Geom. Topology, IV, pages 357-422. Int. Press, Cambridge, MA, 1995. . arXiv: hep-th/9312104 · Zbl 0863.53054
[11] M. Zielenkiewicz. Integration over homogeneous spaces for classical Lie groups using iterated residues at infinity. centr.eur.j.math., 12:574-583, 2014. DOI:, URL: https://doi.org/10.2478/s11533-013-0372-z. . Digital Object Identifier: 10.2478/s11533-013-0372-z Google Scholar: Lookup Link arXiv: 1212.6623 · Zbl 1300.57035 · doi:10.2478/s11533-013-0372-z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.