×

Improved stochastic configuration networks with vision patch fusion method for industrial image classification. (English) Zbl 07854209

Summary: This paper contributes to the advancement of stochastic configuration neural networks (SCN) in the field of visual applications. The proposed image classification randomized algorithm is an extension of deep stochastic configuration networks (DeepSCN), known as an improved SCN with vision patch fusion (Vi-SCN). Compared to existing two dimensional stochastic configuration networks (2DSCN) and DeepSCN, we have developed an incremental modeling method that employs a stochastic configuration patch fusion method. This method extracts randomly fused image features from three-channel high-resolution image data, improving the network’s ability to extract features. Moreover, we have introduced a strategy for dynamically determining the depth structure of the network, enabling flexible adjustments to the network structure and the number of nodes in each layer based on the complexity of image recognition tasks. Through a series of comparisons on four image classification benchmark datasets, we assess the superior learning performance of our design compared to 2DSCN and DeepSCN. Furthermore, to evaluate the performance of Vi-SCN in practical visual application scenarios, we collect three industrial datasets with distinct characteristics. Vi-SCN demonstrate outstanding performance in all three tasks, showing its significant potential in image recognition.

MSC:

68-XX Computer science
94-XX Information and communication theory, circuits
Full Text: DOI

References:

[1] Dogan, A.; Birant, D., Machine learning and data mining in manufacturing, Expert Syst. Appl., 166, Article 114060 pp., 2021
[2] Mypati, O.; Mukherjee, A.; Mishra, D.; Pal, S. K.; Chakrabarti, P. P.; Pal, A., A critical review on applications of artificial intelligence in manufacturing, Artif. Intell. Rev., 1-108, 2023
[3] Li, K.; Qiao, J.; Wang, D., Online self-learning stochastic configuration networks for nonstationary data stream analysis, IEEE Trans. Ind. Inform., 1-10, 2023
[4] LeCun, Y.; Bengio, Y.; Hinton, G., Deep learning, Nature, 521, 7553, 436-444, 2015
[5] Jordan, M. I.; Mitchell, T. M., Machine learning: trends, perspectives, and prospects, Science, 349, 6245, 255-260, 2015 · Zbl 1355.68227
[6] Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A., Going deeper with convolutions, (Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015), 1-9
[7] Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z., Rethinking the inception architecture for computer vision, (Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016), 2818-2826
[8] Iandola, F. N.; Han, S.; Moskewicz, M. W.; Ashraf, K.; Dally, W. J.; Keutzer, K., SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5 MB model size, 2016, arXiv preprint
[9] He, K.; Zhang, X.; Ren, S.; Sun, J., Deep residual learning for image recognition, (Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016), 770-778
[10] Krizhevsky, A.; Sutskever, I.; Hinton, G. E., ImageNet classification with deep convolutional neural networks, Commun. ACM, 60, 6, 84-90, 2017
[11] Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K. Q., Densely connected convolutional networks, (Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017), 4700-4708
[12] Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser, Ł.; Polosukhin, I., Attention is all you need, Adv. Neural Inf. Process. Syst., 30, 2017
[13] Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; Uszkoreit, J.; Houlsby, N., An image is worth 16x16 words: transformers for image recognition at scale, (International Conference on Learning Representations, 2020)
[14] Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B., Swin transformer: hierarchical vision transformer using shifted windows, (Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021), 10012-10022
[15] Li, J.; Xia, X.; Li, W.; Li, H.; Wang, X.; Xiao, X.; Wang, R.; Zheng, M.; Pan, X., Next-vit: next generation vision transformer for efficient deployment in realistic industrial scenarios, 2022, arXiv preprint
[16] Wang, D.; Li, M., Stochastic configuration networks: fundamentals and algorithms, IEEE Trans. Cybern., 47, 10, 3466-3479, 2017
[17] Wang, D.; Cui, C., Stochastic configuration networks ensemble with heterogeneous features for large-scale data analytics, Inf. Sci., 417, 55-71, 2017
[18] Jiao, W.; Li, R.; Wang, J.; Wang, D.; Zhang, K., Activity recognition in rehabilitation training based on ensemble stochastic configuration networks, Neural Comput. Appl., 35, 1-17, 2023
[19] Li, K.; Yang, C.; Wang, W.; Qiao, J., An improved stochastic configuration network for concentration prediction in wastewater treatment process, Inf. Sci., 622, 148-160, 2023 · Zbl 1536.93851
[20] Dai, W.; Li, D.; Zhou, P.; Chai, T., Stochastic configuration networks with block increments for data modeling in process industries, Inf. Sci., 484, 367-386, 2019
[21] Dai, W.; Zhou, X.; Li, D.; Zhu, S.; Wang, X., Hybrid parallel stochastic configuration networks for industrial data analytics, IEEE Trans. Ind. Inform., 18, 4, 2331-2341, 2021
[22] Zhao, Y.; Deng, X.; Li, S., A nonlinear industrial soft sensor modeling method based on locality preserving stochastic configuration network with utilizing unlabeled samples, ISA Trans., 139, 2023
[23] Tian, P.; Sun, K.; Wang, D., Performance of soft sensors based on stochastic configuration networks with nonnegative garrote, Neural Comput. Appl., 34, 18, 16061-16071, 2022
[24] Huang, C.; Huang, Q.; Wang, D., Stochastic configuration networks based adaptive storage replica management for power big data processing, IEEE Trans. Ind. Inform., 16, 1, 373-383, 2019
[25] Li, W.; Tao, H.; Li, H.; Chen, K.; Wang, J., Greengage grading using stochastic configuration networks and a semi-supervised feedback mechanism, Inf. Sci., 488, 1-12, 2019
[26] Zhang, Q.; Li, W.; Li, H.; Wang, J., Self-blast state detection of glass insulators based on stochastic configuration networks and a feedback transfer learning mechanism, Inf. Sci., 522, 259-274, 2020
[27] Wang, D.; Li, M., Deep stochastic configuration networks with universal approximation property, (2018 International Joint Conference on Neural Networks (IJCNN), 2018, IEEE), 1-8
[28] Li, M.; Wang, D., 2-d stochastic configuration networks for image data analytics, IEEE Trans. Cybern., 51, 1, 359-372, 2021
[29] Lu, J.; Zhao, J.; Cao, F., Extended feed forward neural networks with random weights for face recognition, Neurocomputing, 136, 96-102, 2014
[30] Felicetti, M. J.; Wang, D., Deep stochastic configuration networks with optimised model and hyper-parameters, Inf. Sci., 600, 431-441, 2022
[31] Felicetti, M. J.; Wang, D., Deep stochastic configuration networks with different random sampling strategies, Inf. Sci., 607, 819-830, 2022
[32] Xiao, H.; Rasul, K.; Vollgraf, R., Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms, 2017, arXiv preprint
[33] LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P., Gradient-based learning applied to document recognition, Proc. IEEE, 86, 11, 2278-2324, 1998
[34] Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L., Imagenet: a large-scale hierarchical image database, (2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009, IEEE), 248-255
[35] Bao, Y.; Song, K.; Liu, J.; Wang, Y.; Yan, Y.; Yu, H.; Li, X., Triplet-graph reasoning network for few-shot metal generic surface defect segmentation, IEEE Trans. Instrum. Meas., 70, 1-11, 2021
[36] Li, M.; Huang, C.; Wang, D., Robust stochastic configuration networks with maximum correntropy criterion for uncertain data regression, Inf. Sci., 473, 73-86, 2019 · Zbl 1450.62123
[37] Wang, D.; Li, M., Robust stochastic configuration networks with kernel density estimation for uncertain data regression, Inf. Sci., 412, 210-222, 2017 · Zbl 1443.62315
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.