×

Calculation of seismic stability of buildings in the Far North using the grid-characteristic method. (English) Zbl 07853983

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
86Axx Geophysics
74Sxx Numerical and other methods in solid mechanics
Full Text: DOI

References:

[1] R. Bale, B. Gratacos, B. Mattocks, S. Roche, K. Poplavskii, and X. Li, ‘‘Shear wave splitting applications for fracture analysis and improved imaging: Some onshore examples,’’ First Break 27 (9) (2009). doi:10.3997/1365-2397.27.1304.32448
[2] Ma, Z.; Liao, H.; Dang, F.; Cheng, Y., Seismic slope stability and failure process analysis using explicit finite element method, Bull. Eng. Geol. Environ., 80, 1287-1301, 2021 · doi:10.1007/s10064-020-01989-3
[3] C. Wang, B. Hawlader, N. Islam, and K. Soga, ‘‘Implementation of a large deformation finite element modelling technique for seismic slope stability analyses,’’ Soil Dyn. Earthquake Eng. 127, 105824 (2019). doi:10.1016/j.soildyn.2019.105824
[4] Qin, C.; Zhou, J., On the seismic stability of soil slopes containing dual weak layers: True failure load assessment by finite-element limit-analysis, Acta Geotech., 18, 3153-3175, 2023 · doi:10.1007/s11440-022-01730-2
[5] Lee, J.; Lee, I. W.; Choo, Y. W.; Yoo, M., Centrifuge and numerical simulation of pile supported slab track system behavior on soft soil under seismic loading, KSCE J. Civil Eng., 24, 3179-3188, 2020 · doi:10.1007/s12205-020-1885-1
[6] C. Li, L. Su, H. Liao, C. Zhang, and S. Xiao, ‘‘Modeling of rapid evaluation for seismic stability of soil slope by finite element limit analysis,’’ Comput. Geotech. 133, 104074 (2021). doi:10.1016/j.compgeo.2021.104074
[7] A. R. Kalantari and A. Johari, ‘‘System reliability analysis for seismic stability of the soldier pile wall using the conditional random finite-element method,’’ Int. J. Geomech. 22, 04022159 (2022). doi:10.1061/(ASCE)GM.1943-5622.0002534
[8] W. Peng, M. Zhao, H. Zhao, and C. Yang, ‘‘Seismic stability of the slope containing a laterally loaded pile by finite-element limit analysis,’’ Int. J. Geomech. 22, 06021033 (2022). doi:10.1061/(ASCE)GM.1943-5622.0002226
[9] D. Song, Z. Chen, H. Chao, Y. Ke, and W. Nie, ‘‘Numerical study on seismic response of a rock slope with discontinuities based on the time-frequency joint analysis method,’’ Soil Dyn. Earthquake Eng. 133, 106112 (2020). doi:10.1016/j.soildyn.2020.106112
[10] Fan, G.; Zhang, L.; Zhang, J.; Yang, C., Analysis of seismic stability of an obsequent rock slope using time-frequency method, Rock Mech. Rock Eng., 52, 3809-3823, 2019 · doi:10.1007/s00603-019-01821-9
[11] Deng, Z.; Liu, X.; Liu, Y.; Liu, S.; Han, Y.; Liu, J.; Tu, Y., Model test and numerical simulation on the dynamic stability of the bedding rock slope under frequent microseisms, Earthquake Eng. Eng. Vibrat., 19, 919-935, 2020 · doi:10.1007/s11803-020-0604-8
[12] P. Dou, C. Xu, X. Du, M. Hesham El Naggar, and S. Chen, ‘‘Experimental study on seismic instability of pile-supported structure considering different ground conditions,’’ J. Geotech. Geoenviron. Eng. 147, 04021127 (2021). doi:10.1061/(ASCE)GT.1943-5606.0002632
[13] Chen, H.; Jiang, G.; Zhao, X.; Zhu, D.; Liu, Y.; Tian, H., Seismic response evaluation of high-steep slopes supported by anti-slide piles with different initial damage based on shaking table test, Materials, 15, 3982, 2022 · doi:10.3390/ma15113982
[14] B. Fatahi, B. Huang, N. Yeganeh, S. Terzaghi, and S. Banerjee, ‘‘Three-dimensional simulation of seismic slope-foundation-structure interaction for buildings near shallow slopes,’’ Int. J. Geomech. 20, 04019140 (2020). doi:10.1061/(ASCE)GM.1943-5622.0001529
[15] A. Namdar, ‘‘Nonlinear lateral displacement of the single pile: A seismic analytical investigation,’’ Eng. Failure Anal. 127, 105509 (2021). doi:10.1016/j.engfailanal.2021.105509
[16] N. X. Tran, T. Bong, B. S. Yoo, and S. R. Kim, ‘‘Evaluation of the soil: Pile interface properties in the lateral direction for seismic analysis in sand,’’ Soil Dyn. Earthquake Eng. 140, 106473 (2021). doi:10.1016/j.soildyn.2020.106473
[17] Hu, H.; Gan, G.; Bao, Y.; Guo, X.; Xiong, M.; Han, X.; Chen, K.; Cui, L.; Wang, L., Nonlinear stochastic seismic response analysis of three-dimensional reinforced concrete piles, Buildings, 13, 89, 2022 · doi:10.3390/buildings13010089
[18] Li, Y.; Chu, Z.; Zhang, L.; He, Y., Research on the dynamic response of a slope reinforced by a pile-anchor structure under seismic loading, Buildings, 13, 2500, 2023 · doi:10.3390/buildings13102500
[19] X. Xu and Y. Huang, ‘‘Parametric study of structural parameters affecting seismic stability in slopes reinforced by pile-anchor structures,’’ Soil Dyn. Earthquake Eng. 147, 106789 (2021). doi:10.1016/j.soildyn.2021.106789
[20] Y. Huang, X. Xu, and W. Mao, ‘‘Numerical performance assessment of slope reinforcement using a pile-anchor structure under seismic loading,’’ Soil Dyn. Earthquake Eng. 129, 105963 (2020). doi:10.1016/j.soildyn.2019.105963
[21] H. Hu, Y. Huang, M. Xiong, and L. Zhao, ‘‘Investigation of seismic behavior of slope reinforced by anchored pile structures using shaking table tests,’’ Soil Dyn. Earthquake Eng. 150, 106900 (2021). doi:10.1016/j.soildyn.2021.106900
[22] A. Fa-You, M. C. Hei, S. Q. Yan, and P. Zhang, ‘‘Investigating the effect of the rock-socketed depth of the hinged cable-anchored pile on the earthquake response characteristics of supporting structures,’’ Adv. Civil Eng. 2022, 2249654 (2022). doi:10.1155/2022/2249654
[23] Peng, W.; Zhao, M.; Zhao, H.; Yang, C., Seismic stability and failure mode of the slope containing a two-pile foundation, Bull. Eng. Geol. Environ., 82, 33, 2023 · doi:10.1007/s10064-022-03039-6
[24] Lopez Jimenez, G. A.; Dias, D.; Jenck, O., Effect of the soil-pile-structure interaction in seismic analysis: case of liquefiable soils, Acta Geotech., 14, 1509-1525, 2019 · doi:10.1007/s11440-018-0746-2
[25] Petrov, I. B.; Kholodov, A. S., Numerical investigation of certain dynamical problems of the mechanics of a deformable solid body by the grid-characteristic method, Zh. Vychisl. Mat. Mat. Fiz., 24, 722-739, 1984 · Zbl 0566.73068 · doi:10.1016/0041-5553(84)90044-2
[26] N. Khokhlov, A. Favorskaya, V. Stetsyuk, and I. Mitskovets, ‘‘Grid-characteristic method using Chimera meshes for simulation of elastic waves scattering on geological fractured zones,’’ J. Comput. Phys. 446, 110637 (2021). doi:10.1016/j.jcp.2021.110637 · Zbl 07516456
[27] Favorskaya, A. V.; Zhdanov, M. S.; Khokhlov, N. I.; Petrov, I. B., Modeling the wave phenomena in acoustic and elastic media with sharp variations of physical properties using the grid-characteristic method, Geophys. Prospect., 66, 1485-1502, 2018 · doi:10.1111/1365-2478.12639
[28] Khokhlov, N. I.; Favorskaya, A.; Furgailo, V., Grid-characteristic method on overlapping curvilinear meshes for modeling elastic waves scattering on geological fractures, Minerals, 12, 1597, 2022 · doi:10.3390/min12121597
[29] Favorskaya, A. V.; Khokhlov, N. I.; Petrov, I. B., Grid-characteristic method on joint structured regular and curved grids for modeling coupled elastic and acoustic wave phenomena in objects of complex shape, Lobachevskii J. Math., 41, 512-525, 2020 · Zbl 1451.65134 · doi:10.1134/S1995080220040083
[30] Breus, A.; Favorskaya, A.; Golubev, V.; Kozhemyachenko, A.; Petrov, I., Investigation of seismic stability of high-rising buildings using grid-characteristic method, Proc. Comput. Sci., 154, 305-310, 2019 · doi:10.1016/j.procs.2019.06.044
[31] Petrov, I. B.; Favorskaya, A. V., Computation of seismic resistance of an ice island by the grid-characteristic method on combined grids, Comput. Math. Math. Phys., 61, 1339-1352, 2021 · Zbl 1469.86004 · doi:10.1134/S0965542521060129
[32] Favorskaya, A.; Golubev, V.; Grigorievyh, D., Explanation the difference in destructed areas simulated using various failure criteria by the wave dynamics analysis, Proc. Comput. Sci., 126, 1091-1099, 2018 · doi:10.1016/j.procs.2018.08.046
[33] Favorskaya, A.; Petrov, I.; Golubev, V.; Khokhlov, N., Numerical simulation of earthquakes impact on facilities by grid-characteristic method, Proc. Comput. Sci., 112, 1206-1215, 2017 · doi:10.1016/j.procs.2017.08.035
[34] Z. Tang, Y. Hong, L. He, and Z. Li, ‘‘Seismic performance of storage tank isolated by different isolators through real-time hybrid simulation,’’ Int. J. Struct. Stab. Dyn. 21, 2150190 (2021). doi:10.1142/S021945542150190X
[35] Favorskaya, A. V., Simulation of the human head ultrasound study by grid-characteristic method on analytically generated curved meshes, Smart Innov. Syst. Technol., 214, 249-263, 2021 · doi:10.1007/978-981-33-4709-0_21
[36] Favorskaya, A. V.; Khokhlov, N., Using Chimera grids to describe boundaries of complex shape, Smart Innov. Syst. Technol., 309, 249-258, 2022 · doi:10.1007/978-981-19-3444-5_22
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.