×

Multilevel varying coefficient spatiotemporal model. (English) Zbl 07853576

Summary: Over \(785,000\) individuals in the United States have end-stage renal disease (ESRD), with about 70% of patients on dialysis, a life-sustaining treatment. Dialysis patients experience frequent hospitalizations. In order to identify risk factors of hospitalizations, we utilize data from the large national database, United States Renal Data System (USRDS). To account for the hierarchical structure of the data, with longitudinal hospitalization rates nested in dialysis facilities and dialysis facilities nested in geographic regions across the United States, we propose a multilevel varying coefficient spatiotemporal model (M-VCSM) where region- and facility-specific random deviations are modelled through a multilevel Karhunen-Loéve (KL) expansion. The proposed M-VCSM includes time-varying effects of multilevel risk factors at the region- (e.g., urbanicity and area deprivation index) and facility-levels (e.g., patient demographic makeup) and incorporates spatial correlations across regions via a conditional autoregressive (CAR) structure. Efficient estimation and inference are achieved through the fusion of functional principal component analysis (FPCA) and Markov chain Monte Carlo (MCMC). Applications to the USRDS data highlight significant region- and facility-level risk factors of hospitalizations and characterize time periods and spatial locations with elevated hospitalization risk. Finite sample performance of the proposed methodology is studied through simulations.
{© 2021 John Wiley & Sons, Ltd.}

MSC:

62-XX Statistics
Full Text: DOI

References:

[1] Baladandayuthapani, V., Mallick, B. K., Young Hong, M., Lupton, J. R., Turner, N. D., & Carroll, R. J. (2008). Bayesian hierarchical spatially correlated functional data analysis with application to colon carcinogenesis. Biometrics, 64(1), 64-73. · Zbl 1274.62715
[2] Banerjee, S., Carlin, B. P., & Gelfand, A. E. (2014). Hierarchical modeling and analysis for spatial data. Boca Raton, FL: CRC Press.
[3] Cleveland, W. S., Grosse, E., & Shyu, W. M. (1991). Local regression models. In Chambers, J. M. (ed.), & Hastie, T. J (ed.) (Eds.), Statistical models in s. Pacific Grove: Wadsworth & Brooks, pp. 309-376.
[4] Cox, D. D. (1993). An analysis of Bayesian inference for nonparametric regression. The Annals of Statistics, 21, 903-923. · Zbl 0778.62003
[5] Crainiceanu, C. M., Ruppert, D., Carroll, R. J., Joshi, A., & Goodner, B. (2007). Spatially adaptive Bayesian penalized splines with heteroscedastic errors. Journal of Computational and Graphical Statistics, 16(2), 265-288.
[6] Crainiceanu, C. M., Staicu, A.‐M., & Di, C.‐Z. (2009). Generalized multilevel functional regression. Journal of the American Statistical Association, 104(488), 1550-1561. · Zbl 1205.62099
[7] Cressie, N., & Wikle, C. K. (2011). Statistics for spatio‐temporal data. Hoboken, NJ: John Wiley and Sons. · Zbl 1273.62017
[8] Di, C.‐Z., Crainiceanu, C. M., Caffo, B. S., & Punjabi, N. M. (2009). Multilevel functional principal component analysis. The Annals of Applied Statistics, 3(1), 458. · Zbl 1160.62061
[9] Hasenstab, K., Scheffler, A., Telesca, D., Sugar, C. A., Jeste, S., DiStefano, C., & Şentürk, D. (2017). A multi‐dimensional functional principal components analysis of EEG data. Biometrics, 73(3), 999-1009. · Zbl 1522.62142
[10] Hastie, T., & Tibshirani, R. (1993). Varying‐coefficient models. Journal of the Royal Statistical Society. Series B (Methodological), 55(4), 757-796. · Zbl 0796.62060
[11] Kalantar‐Zadeh, K., Abbott, K. C., Salahudeen, A. K., Kilpatrick, R. D., & Horwich, T. B. (2005). Survival advantages of obesity in dialysis patients. The American Journal of Clinical Nutrition, 81(3), 543-554.
[12] Kind, A. myJ. H., & Buckingham, W. R. (2018). Making neighborhood‐disadvantage metrics accessible—The neighborhood atlas. The New England Journal of Medicine, 378(26), 2456.
[13] Krivobokova, T., Kneib, T., & Claeskens, G. (2010). Simultaneous confidence bands for penalized spline estimators. Journal of the American Statistical Association, 105(490), 852-863. · Zbl 1392.62094
[14] Kundu, M. G., Harezlak, J., & Randolph, T. W. (2016). Longitudinal functional models with structured penalties. Statistical Modelling, 16(2), 114-139. · Zbl 07259013
[15] Lang, S., & Brezger, A. (2004). Bayesian P‐splines. Journal of Computational and Graphical Statistics, 13(1), 183-212.
[16] Li, Y., Nguyen, D. V., Banerjee, S., Rhee, C. M., Kalantar‐Zadeh, K., Kürüm, E., & Şentürk, D. (2021). Multilevel modeling of spatially nested functional data: Spatiotemporal patterns of hospitalization rates in the us dialysis population. Statistics in Medicine, 40(17), 3937-3952.
[17] Li, Y., Nguyen, D. V., Chen, Y., Rhee, C. M., Kalantar‐Zadeh, K., & Şentürk, D. (2018). Modeling time‐varying effects of multilevel risk factors of hospitalizations in patients on dialysis. Statistics in Medicine, 37(30), 4707-4720.
[18] Li, Y., Nguyen, D. V., Kürüm, E., Rhee, C. M., Chen, Y., Kalantar‐Zadeh, K., & Şentürk, D. (2020). A multilevel mixed effects varying coefficient model with multilevel predictors and random effects for modeling hospitalization risk in patients on dialysis. Biometrics, 76(3), 924-938. · Zbl 1468.62393
[19] Marra, G., & Wood, S. N. (2012). Coverage properties of confidence intervals for generalized additive model components. Scandinavian Journal of Statistics, 39(1), 53-74. · Zbl 1246.62058
[20] Morris, J. S., & Carroll, R. J. (2006). Wavelet‐based functional mixed models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(2), 179-199. · Zbl 1110.62053
[21] Morris, J. S., Vannucci, M., Brown, P. J., & Carroll, R. J. (2003). Wavelet‐based nonparametric modeling of hierarchical functions in colon carcinogenesis. Journal of the American Statistical Association, 98(463), 573-583. · Zbl 1040.62104
[22] Quick, H., Banerjee, S., & Carlin, B. P. (2013). Modeling temporal gradients in regionally aggregated california asthma hospitalization data. The Annals of Applied Statistics, 7(1), 154-176. · Zbl 1454.62382
[23] Rice, J. A., & Silverman, B. W. (1991). Estimating the mean and covariance structure nonparametrically when the data are curves. Journal of the Royal Statistical Society: Series B (Methodological), 53(1), 233-243. · Zbl 0800.62214
[24] Scheffler, A., Telesca, D., Li, Q., Sugar, C. A., Distefano, C., Jeste, S., & Şentürk, D. (2020). Hybrid principal components analysis for region‐referenced longitudinal functional EEG data. Biostatistics, 21(1), 139-157.
[25] Scheipl, F., Staicu, A.‐M., & Greven, S. (2015). Functional additive mixed models. Journal of Computational and Graphical Statistics, 24(2), 477-501.
[26] Serban, N. (2011). A space‐time varying coefficient model: The equity of service accessibility. The Annals of Applied Statistics, 5, 2024-2051. · Zbl 1228.62158
[27] Short, M., Carlin, B. P., & Bushhouse, S. (2002). Using hierarchical spatial models for cancer control planning in Minnesota (United States). Cancer Causes & Control, 13(10), 903-916.
[28] Staicu, A.‐M., Crainiceanu, C. M., & Carroll, R. J. (2010). Fast methods for spatially correlated multilevel functional data. Biostatistics, 11(2), 177-194. · Zbl 1437.62610
[29] USRDS (2020). United States Renal Data System 2020 Annual Data Report: “Epidemiology of Kidney Disease in the United States”: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD.
[30] Wood, S. N. (2017). Generalized additive models: An introduction with r: CRC press. · Zbl 1368.62004
[31] Yao, F., Müller, H.‐G., & Wang, J.‐L. (2005). Functional data analysis for sparse longitudinal data. Journal of the American Statistical Association, 100(470), 577-590. · Zbl 1117.62451
[32] Zhang, L., Baladandayuthapani, V., Zhu, H., Baggerly, K. A., Majewski, T., Czerniak, B. A., & Morris, J. S. (2016). Functional CAR models for large spatially correlated functional datasets. Journal of the American Statistical Association, 111(514), 772-786.
[33] Zipunnikov, V., Caffo, B., Yousem, D. M., Davatzikos, C., Schwartz, B. S., & Crainiceanu, C. (2011). Multilevel functional principal component analysis for high‐dimensional data. Journal of Computational and Graphical Statistics, 20(4), 852-873.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.