×

A Chebyshev neural network-based numerical scheme to solve distributed-order fractional differential equations. (English) Zbl 07853330

Summary: This study aims to develop a first-order Chebyshev neural network-based technique for solving ordinary and partial distributed-order fractional differential equations. The neural network is used as a trial solution to construct the loss function. The loss function is utilized to train the neural network via an extreme learning machine and obtain the solution. The novelty of this work is developing and implementing a neural network-based framework for distributed-order fractional differential equations via an extreme learning machine. The proposed method is validated on several test problems. The error metrics utilized in the study include the absolute error and the \(\mathbb{L}_2\) error. A comparison with other previously available approaches is presented. Also, we provide the computation time of the method.

MSC:

65-XX Numerical analysis
68-XX Computer science
Full Text: DOI

References:

[1] Kilbas, A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations, 2006, Elsevier Science · Zbl 1092.45003
[2] Oldham, K.; Spanier, J., The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order, 1974, Elsevier · Zbl 0292.26011
[3] Caputo, M.; Fabrizio, M., A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1, 2, 73-85, 2015
[4] Atangana, A.; Baleanu, D., New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, 2016, arXiv preprint
[5] Sun, H.; Chen, W.; Li, C.; Chen, Y., Fractional differential models for anomalous diffusion, Phys. A, Stat. Mech. Appl., 389, 14, 2719-2724, 2010
[6] Rahimkhani, P.; Ordokhani, Y., Numerical investigation of distributed-order fractional optimal control problems via Bernstein wavelets, Optim. Control Appl. Methods, 42, 1, 355-373, 2021 · Zbl 1468.49034
[7] Zaky, M. A.; Machado, J. T., On the formulation and numerical simulation of distributed-order fractional optimal control problems, Commun. Nonlinear Sci. Numer. Simul., 52, 177-189, 2017 · Zbl 1510.49018
[8] Zaky, M. A., A Legendre collocation method for distributed-order fractional optimal control problems, Nonlinear Dyn., 91, 2667-2681, 2018 · Zbl 1392.35331
[9] Atabakzadeh, M. H.; Akrami, M. H.; Erjaee, G. H., Chebyshev operational matrix method for solving multi-order fractional ordinary differential equations, Appl. Math. Model., 37, 20-21, 8903-8911, 2013 · Zbl 1449.34010
[10] Doha, E. H.; Bhrawy, A. H.; Ezz-Eldien, S. S., A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order, Comput. Math. Appl., 62, 5, 2364-2373, 2011 · Zbl 1231.65126
[11] Katsikadelis, J. T., Numerical solution of distributed-order fractional differential equations, J. Comput. Phys., 259, 11-22, 2014 · Zbl 1349.65212
[12] Mashayekhi, Somayeh; Razzaghi, Mohsen, Numerical solution of distributed-order fractional differential equations by hybrid functions, J. Comput. Phys., 315, 169-181, 2016 · Zbl 1349.65253
[13] Dabiri, A.; Butcher, E. A., Efficient modified Chebyshev differentiation matrices for fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 50, 284-310, 2017 · Zbl 1510.65170
[14] Jibenja, N.; Yuttanan, B.; Razzaghi, M., An efficient method for numerical solutions of distributed-order fractional differential equations, J. Comput. Nonlinear Dyn., 13, 11, 2018
[15] Diethelm, K.; Ford, N. J., Numerical analysis for distributed-order differential equations, J. Comput. Appl. Math., 225, 1, 96-104, 2009 · Zbl 1159.65103
[16] Lagaris, I. E.; Likas, A.; Fotiadis, D. I., Artificial neural networks for solving ordinary and partial differential equations, IEEE Trans. Neural Netw., 9, 5, 987-1000, 1998
[17] Li-ying, X.; Hui, W.; Zhe-zhao, Z., The algorithm of neural networks on the initial value problems in ordinary differential equations, (2007 2nd IEEE Conference on Industrial Electronics and Applications, 2007, May, IEEE), 813-816
[18] Chedjou, J. C.; Kyamakya, K.; Latif, M. A.; Khan, U. A.; Moussa, I., Solving stiff ordinary differential equations and partial differential equations using analog computing based on cellular neural networks, (2009 2nd International Workshop on Nonlinear Dynamics and Synchronization, 2009, July, IEEE), 213-220
[19] Mall, S.; Chakraverty, S., Application of Legendre neural network for solving ordinary differential equations, Appl. Soft Comput., 43, 347-356, 2016
[20] Dufera, T. T., Deep neural network for system of ordinary differential equations: vectorized algorithm and simulation, Mach. Learn. Appl., 5, Article 100058 pp., 2021
[21] Rivera, J. A.; Taylor, J. M.; Omella, Á. J.; Pardo, D., On quadrature rules for solving partial differential equations using neural networks, Comput. Methods Appl. Mech. Eng., 393, Article 114710 pp., 2022 · Zbl 1507.65272
[22] Zahoor Raja, M. A.; Khan, J. A.; Qureshi, I. M., Evolutionary computational intelligence in solving the fractional differential equations, (Intelligent Information and Database Systems: Second International Conference. Intelligent Information and Database Systems: Second International Conference, ACIIDS, Hue City, Vietnam, March 24-26, 2010. Proceedings, Part I 2, 2010, Springer: Springer Berlin Heidelberg), 231-240
[23] Ibrahim, R. W., The fractional differential polynomial neural network for approximation of functions, Entropy, 15, 10, 4188-4198, 2013 · Zbl 1357.68172
[24] Qu, H.; Liu, X., A numerical method for solving fractional differential equations by using neural network, Adv. Math. Phys., 2015, 2015 · Zbl 1378.65156
[25] Zúñiga-Aguilar, C. J.; Romero-Ugalde, H. M.; Gómez-Aguilar, J. F.; Escobar-Jiménez, R. F.; Valtierra-Rodríguez, M., Solving fractional differential equations of variable-order involving operators with Mittag-Leffler kernel using artificial neural networks, Chaos Solitons Fractals, 103, 382-403, 2017 · Zbl 1375.34110
[26] Rostami, F.; Jafarian, A., A new artificial neural network structure for solving high-order linear fractional differential equations, Int. J. Comput. Math., 95, 3, 528-539, 2018 · Zbl 06869846
[27] Qu, H.; Liu, X.; She, Z., Neural network method for fractional-order partial differential equations, Neurocomputing, 414, 225-237, 2020
[28] Biswas, C.; Singh, A.; Chopra, M.; Das, S., Study of fractional-order reaction-advection-diffusion equation using neural network method, Math. Comput. Simul., 2023 · Zbl 1540.35434
[29] Admon, M. R.; Senu, N.; Ahmadian, A.; Majid, Z. A.; Salahshour, S., A new efficient algorithm based on feedforward neural network for solving differential equations of fractional order, Commun. Nonlinear Sci. Numer. Simul., 117, Article 106968 pp., 2023 · Zbl 07634596
[30] Sivalingam, S. M.; Kumar, P.; Govindaraj, V., A neural networks-based numerical method for the generalized Caputo-type fractional differential equations, Math. Comput. Simul., 2023 · Zbl 1540.65266
[31] Sivalingam, S. M.; Kumar, P.; Govindaraj, V., The hybrid average subtraction and standard deviation based optimizer, Adv. Eng. Softw., 176, Article 103387 pp., 2023
[32] Pakdaman, M.; Ahmadian, A.; Effati, S.; Salahshour, S.; Baleanu, D., Solving differential equations of fractional order using an optimization technique based on training artificial neural network, Appl. Math. Comput., 293, 81-95, 2017 · Zbl 1411.65090
[33] Tan, L. S.; Zainuddin, Z.; Ong, P., Wavelet neural networks based solutions for elliptic partial differential equations with improved butterfly optimization algorithm training, Appl. Soft Comput., 95, Article 106518 pp., 2020
[34] Sivalingam, S. M.; Kumar, P.; Govindaraj, V., A novel optimization-based physics-informed neural network scheme for solving fractional differential equations, Eng. Comput., 1-11, 2023
[35] Sabir, Z.; Bhat, S. A.; Raja, M. A.Z.; Alhazmi, S. E., A swarming neural network computing approach to solve the Zika virus model, Eng. Appl. Artif. Intell., 126, Article 106924 pp., 2023
[36] Huang, G. B.; Zhu, Q. Y.; Siew, C. K., Extreme learning machine: theory and applications, Neurocomputing, 70, 1-3, 489-501, 2006
[37] Yang, Y.; Hou, M.; Luo, J., A novel improved extreme learning machine algorithm in solving ordinary differential equations by Legendre neural network methods, Adv. Differ. Equ., 2018, 1, 1-24, 2018 · Zbl 1448.68382
[38] Sun, H.; Hou, M.; Yang, Y.; Zhang, T.; Weng, F.; Han, F., Solving partial differential equation based on Bernstein neural network and extreme learning machine algorithm, Neural Process. Lett., 50, 1153-1172, 2019
[39] Yang, Y.; Hou, M.; Sun, H.; Zhang, T.; Weng, F.; Luo, J., Neural network algorithm based on Legendre improved extreme learning machine for solving elliptic partial differential equations, Soft Comput., 24, 1083-1096, 2020 · Zbl 1442.65441
[40] Liu, M.; Hou, M.; Wang, J.; Cheng, Y., Solving two-dimensional linear partial differential equations based on Chebyshev neural network with extreme learning machine algorithm, Eng. Comput., 38, 2, 874-894, 2020
[41] Dwivedi, V.; Srinivasan, B., Physics informed extreme learning machine (pielm)-a rapid method for the numerical solution of partial differential equations, Neurocomputing, 391, 96-118, 2020
[42] Calabrò, F.; Fabiani, G.; Siettos, C., Extreme learning machine collocation for the numerical solution of elliptic PDEs with sharp gradients, Comput. Methods Appl. Mech. Eng., 387, Article 114188 pp., 2021 · Zbl 1507.65194
[43] Panghal, S.; Kumar, M., Optimization free neural network approach for solving ordinary and partial differential equations, Eng. Comput., 37, 2989-3002, 2021
[44] Schiassi, E.; Furfaro, R.; Leake, C.; De Florio, M.; Johnston, H.; Mortari, D., Extreme theory of functional connections: a fast physics-informed neural network method for solving ordinary and partial differential equations, Neurocomputing, 457, 334-356, 2021
[45] Galaris, E.; Fabiani, G.; Calabrò, F.; di Serafino, D.; Siettos, C., Numerical solution of stiff ODEs with physics-informed RPNNs, 2021, arXiv preprint
[46] Fabiani, G.; Calabrò, F.; Russo, L.; Siettos, C., Numerical solution and bifurcation analysis of nonlinear partial differential equations with extreme learning machines, J. Sci. Comput., 89, 1-35, 2021 · Zbl 1486.65273
[47] Dong, S.; Li, Z., Local extreme learning machines and domain decomposition for solving linear and nonlinear partial differential equations, Comput. Methods Appl. Mech. Eng., 387, Article 114129 pp., 2021 · Zbl 1507.65174
[48] Dong, S.; Yang, J., On computing the hyperparameter of extreme learning machines: algorithm and application to computational PDEs, and comparison with classical and high-order finite elements, J. Comput. Phys., 463, Article 111290 pp., 2022 · Zbl 07536780
[49] Lu, Y.; Weng, F.; Sun, H., Numerical solution for high-order ordinary differential equations using H-ELM algorithm, Eng. Comput., 39, 7, 2781-2801, 2022
[50] Quan, H. D.; Huynh, H. T., Solving partial differential equation based on extreme learning machine, Math. Comput. Simul., 205, 697-708, 2023 · Zbl 1540.68228
[51] Vinodbhai, C. D.; Dubey, S., Numerical solution of neutral delay differential equations using orthogonal neural network, Sci. Rep., 13, 1, 3164, 2023
[52] Ni, N.; Dong, S., Numerical computation of partial differential equations by hidden-layer concatenated extreme learning machine, J. Sci. Comput., 95, 2, 35, 2023 · Zbl 1515.65046
[53] Sivalingam, S. M.; Kumar, P.; Govindaraj, V., A novel numerical scheme for fractional differential equations using extreme learning machine, Phys. A, Stat. Mech. Appl., 622, Article 128887 pp., 2023 · Zbl 07695483
[54] Ye, Y.; Li, Y.; Fan, H.; Liu, X.; Zhang, H., SLeNN-ELM: a shifted Legendre neural network method for fractional delay differential equations based on extreme learning machine, Netw. Heterog. Media, 18, 1, 494-512, 2023 · Zbl 1531.65088
[55] Sivalingam, S. M.; Govindaraj, V., A novel numerical approach for time-varying impulsive fractional differential equations using theory of functional connections and neural network, Expert Syst. Appl., 238, Article 121750 pp., 2024
[56] Morgado, M. L.; Rebelo, M.; Ferras, L. L.; Ford, N. J., Numerical solution for diffusion equations with distributed-order in time using a Chebyshev collocation method, Appl. Numer. Math., 114, 108-123, 2017 · Zbl 1357.65198
[57] Ford, N. J.; Luisa Morgado, M.; Rebelo, M., An implicit finite difference approximation for the solution of the diffusion equation with distributed-order in time, Electron. Trans. Numer. Anal., 44, 289-305, 2015 · Zbl 1330.65130
[58] Atanackovic, T. M.; Pilipovic, S.; Zorica, D., Distributed-order fractional wave equation on a finite domain: creep and forced oscillations of a rod, Contin. Mech. Thermodyn., 23, 305-318, 2011 · Zbl 1272.74324
[59] Pourbabaee, M.; Saadatmandi, A., A novel Legendre operational matrix for distributed-order fractional differential equations, Appl. Math. Comput., 361, 215-231, 2019 · Zbl 1428.34021
[60] Do, Q. H.; Ngo, H. T.; Razzaghi, M., A generalized fractional-order Chebyshev wavelet method for two-dimensional distributed-order fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 95, Article 105597 pp., 2021 · Zbl 1456.65130
[61] Maleknejad, K.; Rashidinia, J.; Eftekhari, T., Numerical solutions of distributed-order fractional differential equations in the time domain using the Müntz-Legendre wavelets approach, Numer. Methods Partial Differ. Equ., 37, 1, 707-731, 2021 · Zbl 1534.65206
[62] Pourbabaee, M.; Saadatmandi, A., The construction of a new operational matrix of the distributed-order fractional derivative using Chebyshev polynomials and its applications, Int. J. Comput. Math., 98, 11, 2310-2329, 2021 · Zbl 1491.65113
[63] Karaca, Y., Fractional Calculus Operators-Bloch-Torrey partial differential equation-artificial neural networks-computational complexity modeling of micro-macrostructural brain tissues with diffusion MRI signal processing and neuronal multi-components, Fractals, Article 2340204 pp., 2023
[64] Baishya, C., An operational matrix based on the independence polynomial of a complete bipartite graph for the Caputo fractional derivative, SeMA J., 79, 4, 699-717, 2022 · Zbl 1515.65254
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.