×

Takens’ the last problem and Stein-Ulam spiral type maps. (English) Zbl 07852386

Summary: The main issue of Takens’ problem is solved by introducing a new class of stochastic operators called Stein-Ulam Spiral type (SUS-t) maps on a finite-dimensional simplex. Each SUS-t map is established as non-ergodic, i.e., it possesses historical behaviour. Through the usage of the new introduced class, it propels the work forward with focus on the power of the SUS-t map. Hence this paper establishes that any power of SUS-t map also has historical behaviour. The obvious corollary of the main result is that F. Takens’ last problem [Nonlinearity 21, No. 3, T33–T36 (2008; Zbl 1147.37013)] is resolved within the class of SUS-t maps.

MSC:

37H12 Random iteration
60H25 Random operators and equations (aspects of stochastic analysis)
47A35 Ergodic theory of linear operators
47H25 Nonlinear ergodic theorems

Citations:

Zbl 1147.37013
Full Text: DOI

References:

[1] Akin, E.; Losert, V., Evolutionary dynamics of zero-sum games. J. Math. Biol., 231-258 (1984) · Zbl 0569.92014
[2] Baranski, K.; Misiurewicz, M., Omega-limit sets for the Stein-Ulam spiral map. Topol. Proc., 145-172 (2010) · Zbl 1204.37042
[3] Barreira, L.; Li, J.; Valls, C., Irregular points are residual. Tohoku Math. J., 471-489 (2014) · Zbl 1376.37032
[4] Carvalho, M.; Varandas, P., Genericity of historic behavior for maps and flows. Nonlinearity, 7030-7044 (2021)
[5] Cornfeld, I. P.; Fomin, S. V.; Sinai, Y. G., Ergodic Theory (1982), Springer · Zbl 0493.28007
[6] de Melo, W.; van Strien, S., One-Dimensional Dynamics (1993), Springer-Verlag: Springer-Verlag Berlin · Zbl 0791.58003
[7] Ganikhodjaev, N. N.; Ganikhodjaev, R. N.; Jamilov, U. U., Quadratic stochastic operators and zero-sum game dynamics. Ergod. Theory Dyn. Syst., 1443-1473 (2015) · Zbl 1352.37026
[8] Ganikhodzhaev, N. N.; Zanin, D. V., On a necessary condition for the ergodicity of quadratic operators defined on a two-dimensional simplex. Russ. Math. Surv., 571-572 (2004) · Zbl 1160.37307
[9] Ganikhodzhaev, R.; Mukhamedov, F.; Rozikov, U., Quadratic stochastic operators and processes: results and open problems. Infin. Dimens. Anal. Quantum Probab. Relat. Top., 279-335 (2011) · Zbl 1242.60067
[10] Ganikhodzhaev, R. N., Quadratic stochastic operators, Lyapunov functions and tournaments. Sb. Math., 489-506 (1993) · Zbl 0791.47048
[11] Jamilov, U.; Mukhamedov, F., Historical behavior for a class of Lotka-Volterra systems. Math. Methods Appl. Sci., 17, 11380-11389 (2022) · Zbl 1534.37006
[12] Jamilov, U. U.; Ladra, M., Non-ergodicity of uniform quadratic stochastic operators. Qual. Theory Dyn. Syst., 257-271 (2016) · Zbl 1344.37093
[13] Jamilov, U. U.; Scheutzow, M.; Wilke-Berenguer, M., On the random dynamics of Volterra quadratic operators. Ergod. Theory Dyn. Syst., 228-243 (2017) · Zbl 1408.37090
[14] Kiriki, S.; Teruhiko, T., Takens’ last problem and existence of non-trivial wandering domains. Adv. Math., 524-588 (2017) · Zbl 1381.37031
[15] Kiriki, S.; Nakano, Y.; Soma, T., Historic behaviour for nonautonomous contraction mappings. Nonlinearity, 1111-1124 (2019) · Zbl 1409.37034
[16] Kitchens, B.; Misiurewicz, M., Omega-limit sets for spiral maps. Discrete Contin. Dyn. Syst., 787-798 (2010) · Zbl 1192.37024
[17] Lima, H.; Varandas, P., On the rotation sets of generic homeomorphisms on the torus \(T^d\). Ergod. Theory Dyn. Syst., 2983-3022 (2021) · Zbl 1479.37040
[18] Liu, P.; Elaydi, S. N., Discrete competitive and cooperative models of Lotka-Volterra type. J. Comput. Anal. Appl., 53-73 (2001) · Zbl 1024.39003
[19] Lyubich, Y. I., Mathematical Structures in Population Genetics (1992), Springer-Verlag: Springer-Verlag Berlin · Zbl 0747.92019
[20] May, R. M.; Leonard, W. J., Nonlinear aspects of competition between three species. SIAM J. Appl. Math., 243-253 (1975) · Zbl 0314.92008
[21] Menzel, M. T.; Stein, P. R.; Ulam, S. M., Quadratic transformations: Part 1 (1959), Los Alamos Scientific Laboratory report LA-2305
[22] Mukhamedov, F.; Ganikhodjaev, N. N., Quantum Quadratic Operators and Processes (2015), Springer: Springer Berlin · Zbl 1335.60002
[23] Mukhamedov, F.; Saburov, M., Stability and monotonicity of Lotka-Volterra type operators. Qual. Theory Dyn. Syst., 249-267 (2017) · Zbl 1383.92072
[24] Mukhamedov, F.; Pah, C. H.; Rosli, A., On non-ergodic Volterra cubic operators. Qual. Theory Dyn. Syst., 1225-1235 (2016)
[25] Mukhamedov, F.; Jamilov, U. U.; Pirnapasov, A. T., On non-ergodic uniform Lotka-Volterra operators. Math. Notes, 258-264 (2019) · Zbl 1503.47014
[26] Muroya, Y., Persistence and global stability in discrete models of Lotka-Volterra type. J. Math. Anal. Appl., 24-33 (2007) · Zbl 1124.39011
[27] Pah, C. H.; Rosli, A., On a class of non-ergodic Lotka-Volterra operator. Lobachevskii J. Math., 2591-2598 (2022) · Zbl 1540.47081
[28] Roeger, L.-I. W.; Allen, L. J.S., Discrete May-Leonard competition models I. J. Differ. Equ. Appl., 77-98 (2004) · Zbl 1047.92049
[29] Ruelle, D., Historical behaviour in smooth dynamical systems, 63-66 · Zbl 1067.37501
[30] Saburov, M., On divergence of any order Cesàro mean of Lotka-Volterra operators. Ann. Funct. Anal., 4, 247-254 (2015) · Zbl 1339.47076
[31] Saburov, M., The discrete-time Kolmogorov systems with historic behavior. Math. Methods Appl. Sci., 813-819 (2021) · Zbl 1470.92260
[32] Saburov, M., Uniformly historic behaviour in compact dynamical systems. J. Differ. Equ. Appl., 1006-1023 (2021) · Zbl 1482.37007
[33] Takens, F., Orbits with historic behaviour, or non-existence of averages. Nonlinearity, T33-T36 (2008) · Zbl 1147.37013
[34] Ulam, S. M., A Collection of Mathematical Problems. Interscience Tracts in Pure and Applied Mathematics (1960), Interscience Publishers: Interscience Publishers New York-London · Zbl 0086.24101
[35] Vallander, S. S., On ergodic properties of a family of quadratic stochastic operators, 153-157, (Russian)
[36] Volterra, V., Lois de fluctuation de la population de plusieurs espèces coexistant dans le même milieu. Assoc. Franc. Lyon, 96-98 (1926) · JFM 52.0452.01
[37] Yang, D., On the historical behavior of singular hyperbolic attractors. Proc. Am. Math. Soc., 1641-1644 (2020) · Zbl 1439.37039
[38] Zakharevich, M. I., On the behaviour of trajectories and the ergodic hypothesis for quadratic mappings of a simplex. Russ. Math. Surv., 265-266 (1978) · Zbl 0427.58012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.