×

Spectrum of the \(\overline{\partial}\)-Laplace operator on zero forms for the quantum quadric \(\mathcal{O}_q (Q_N)\). (English) Zbl 07851965

This paper investigates the spectrum of the \(\bar{\partial}\)-Laplace operator on zero-forms for the quantum quadric \(\mathcal O_q(\mathcal Q_N)\), based on the existence of the Heckenberger-Kolb differential calculus of irreducible quantum flag manifolds of types \(B_n\) and \(D_n\) in the list of quantum homogeneous spaces (Table 1,§2.3, page 5; Table 2, Appendix A, page 18).
The main result is Proposition 4.3, stating that for a real quantum parameter \(q\in (0,+\infty)\setminus \{1\}\) sufficiently close to \(1\) and the Hilbert space completion \(L^2(\Omega^0)\) of the *-algebra (Definition 2.1) of \[\Omega^0=B, \Omega^k = \bigoplus_{a+b=k} \Omega^{(a,b)}, {\Omega^{(a,b)}}^*= \Omega^{(b,a)} \] with respect to the inner product (Definition 2.2) \[ \langle .,.\rangle : \Omega^{(\bullet,\bullet)} \times \Omega^{(\bullet,\bullet)} \to \mathbb C; (\omega, \nu) = \mathbf h\circ g_\sigma(\omega, \nu), \] the eigenvalue of the Dolbeault Laplace operator \(D : L^2({\Omega^0}) \to L^2({\Omega^0})\) with \(D(\Delta_{\bar{\partial}}) = L^2(\Omega^0)\) goes to infinity with finite multiplicity and it therefore has compact resolvent.

MSC:

58B32 Geometry of quantum groups
46L67 Quantum groups (operator algebraic aspects)
20G42 Quantum groups (quantized function algebras) and their representations
32W05 \(\overline\partial\) and \(\overline\partial\)-Neumann operators
32Q15 Kähler manifolds
14M15 Grassmannians, Schubert varieties, flag manifolds

References:

[1] Carotenuto, A.; Díaz García, F.; Buachalla, R. Ó., A Borel-Weil theorem for the irreducible quantum flag manifolds, Int. Math. Res. Not., 15, 12977-13006, 2023 · Zbl 1530.46055
[2] Cahen, M.; Franc, A.; Gutt, S., Spectrum of the Dirac operator on complex projective space \(P_{2 q - 1}(\mathbb{C})\), Lett. Math. Phys., 18, 165-176, 1989 · Zbl 0706.58010
[3] D’Andrea, F.; Da̧browski, L., Dirac operators on quantum projective spaces, Commun. Math. Phys., 295, 731-790, 2010 · Zbl 1190.58011
[4] D’Andrea, F.; Dąbrowski, L.; Landi, G., The noncommutative geometry of the quantum projective plane, Rev. Math. Phys., 20, 979-1006, 2008 · Zbl 1155.81024
[5] D’Andrea, F.; Da̧browski, L.; Landi, G.; Wagner, E., Dirac operators on all Podleś quantum spheres, J. Noncommut. Geom., 1, 213-239, 2007 · Zbl 1121.58008
[6] Da̧browski, L.; Landi, G.; Sitarz, A.; van Suijlekom, W.; Várilly, J. C., The Dirac operator on \(S U_q(2)\), Commun. Math. Phys., 259, 729-759, 2005 · Zbl 1090.58504
[7] Da̧browski, L.; Sitarz, A., Dirac operator on the standard Podleś quantum sphere, Banach Cent. Publ., 61, 49-58, 2003 · Zbl 1061.58004
[8] Das, B.; Buachalla, R. Ó.; Somberg, P., A Dolbeault-Dirac spectral triple for quantum proyective space, Doc. Math., 25, 1079-1157, 2020 · Zbl 1466.46067
[9] Das, B.; Buachalla, R. Ó.; Somberg, P., Compact quantum homogeneous Kähler spaces
[10] Das, B.; Buachalla, R. Ó.; Somberg, P., Spectral gaps for twisted Dolbeault-Dirac operators over the irreducible quantum flag manifolds
[11] Díaz García, F.; Buachalla, R. Ó.; Wagner, E., A Dolbeault-Dirac spectral triple for the \(B_2\)-irreducible quantum flag manifold, Commun. Math. Phys., 395, 365-403, 2022 · Zbl 1497.58005
[12] Díaz García, F.; Krutov, A.; Buachalla, R. Ó.; Somberg, P.; Strung, K. R., Positive line bundles over the irreducible quantum flag manifolds, Lett. Math. Phys., 112, 123, 2022 · Zbl 1512.46052
[13] Dijkhuizen, M. S.; Stokman, J. V., Quantized flag manifolds and irreducible ⁎-representation, Commun. Math. Phys., 203, 297-324, 1999 · Zbl 0969.58003
[14] Faddeev, L. D.; Reshetikhin, N. Y.; Takhtadzhyan, L. A., Quantization of Lie groups and Lie algebras, Algebra Anal., 1, 1, 178-206, 1989 · Zbl 0715.17015
[15] Ginoux, N., The Dirac Spectrum, Lectures Notes in Mathematics, 2009, Springer-Verlag: Springer-Verlag Berlin · Zbl 1186.58020
[16] Heckenberger, I.; Kolb, S., The locally finite part of the dual coalgebra of irreducible quantum flag manifolds, Proc. Lond. Math. Soc., 89, 457-484, 2004 · Zbl 1056.58006
[17] Heckenberger, I.; Kolb, S., De Rham complex for the quantized irreducible flag manifolds, J. Algebra, 305, 704-741, 2006 · Zbl 1169.58301
[18] Heckenberger, I.; Kolb, S., Differential forms via the Bernstein-Gelfand-Gelfand resolution for quantized irreducible flag manifolds, J. Geom. Phys., 57, 2316-2344, 2007 · Zbl 1175.17004
[19] Humphreys, J., An Introduction to Lie Algebras and Representation Theory, 1972, Springer-Verlag: Springer-Verlag New York · Zbl 0254.17004
[20] Huybrechts, D., Complex Geometry: an Introduction, Universitext, 2005, Springer-Verlag: Springer-Verlag Heidelberg · Zbl 1055.14001
[21] Klimyk, A.; Schmüdgen, K., Quantum Groups and Their Representations, Texts and Monograph in Physics, 1998, Springer-Verlag: Springer-Verlag Berlin
[22] Krähmer, U.; Tucker-Simmons, M., On the Dolbeault-Dirac operator on quantized symmetric spaces, Trans. Lond. Math. Soc., 2, 33-56, 2015 · Zbl 1331.58012
[23] Krämer, M., Sphärische untergruppen in kompakten zusammenhängenden liegruppen, Compisitio Math., 38, 129-153, 1979 · Zbl 0402.22006
[24] Majid, S., Noncommutative Rieamannian and spin geometry of the standard q-sphere, Comm. Math. Phys., 256, 255-285, 2005 · Zbl 1075.58004
[25] Matassa, M., Kähler structures on quantum irreducible flag manifolds, J. Geom. Phys., 145, Article 103477 pp., 2019 · Zbl 1428.81104
[26] Matassa, M., The parthasarathy formula and a spectral triple for the quantum Lagrangian grassmanians of rank two, Lett. Math. Phys., 109, 1703-1734, 2019 · Zbl 1512.58004
[27] Milhorat, J-L., Spectrum of the Dirac operator on \(G r_2( \mathbb{C}^{m + 2})\), J. Math. Phys., 39, 594-609, 1998 · Zbl 0919.58062
[28] Neshveyev, S.; Tuset, L., The Dirac operator on compact quantum groups, J. Reine. Angew. Math., 641, 1-20, 2010 · Zbl 1218.58020
[29] Buachalla, R. Ó., Noncommutative Kähler structures of quantum homogeneous spaces, Adv. Math., 322, 892-939, 2017 · Zbl 1432.58004
[30] Buachalla, R. Ó., Noncommutative complex structures on quantum homogeneous spaces, J. Geom. Phys., 99, 154-173, 2016 · Zbl 1330.81130
[31] Onishchick, A. L.; Vinberg, E. B., Lie Groups and Algebraic Groups, 1990, Springer-Verlag: Springer-Verlag Heidelberg · Zbl 0722.22004
[32] Takeuchi, M., Relative Hopf modules - equivalence and freeness criteria, J. Algebra, 60, 452-471, 1979 · Zbl 0492.16013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.