×

Some integral inequalities in the framework of generalized \(k\)-proportional fractional integral operators with general kernel. (English) Zbl 07850773

Summary: In this article, using the concept proposed reciently by the author, of a Generalized k-Proportional Fractional Integral Operators with General Kernel, new integral inequalities are obtained for convex functions. It is shown that several known results are particular cases of the proposed inequalities and in the end new directions of work are provided.

MSC:

26A33 Fractional derivatives and integrals
26A51 Convexity of real functions in one variable, generalizations
26D15 Inequalities for sums, series and integrals
Full Text: DOI

References:

[1] B. Ahmad, A. Alsaedi, M. Kirane, B. T. Toberek, Hermite-Hadamard, Hermite-Hadamard-Fejer, Dragomir-Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals, ArXiv: 1701.00092 · Zbl 1426.26008 · doi:10.1016/j.cam.2018.12.030
[2] M. A. Ali, J. E. Napoles, A. Kashuri, Z. Zhang, Fractional non conformable Hermite-Hadamard inequalities for generalized ϕ-convex functions, Fasciculi Mathematici, Nr 64 2020, 5-16 DOI: 10.21008/j.0044-4413.2020.0007
[3] A. Atangana, Derivative with a New Parameter Theory, Methods and Applications, Academic Press, 2016. · Zbl 1342.26020
[4] D. Baleanu, COMMENTS ON: Ortigueira M., Martynyuk V., Fedula M., Machado J.A.T., The failure of certain fractional calculus operators in two physical models, in Fract. Calc. Appl. Anal. 22(2)(2019), Fract. Calc. Appl. Anal., Volume 23: Issue 1, DOI: https://doi.org/10.1515/fca-2020-0012. · Zbl 1427.93054
[5] D. Baleanu, A. Fernandez, On fractional operators and their classifications, Mathematics, 7(830)(2019).
[6] S. Bermudo, P. Korus, Juan E. Napoles, On q-Hermite-Hadamard inequalities for general convex functions, Acta Math. Hungar. 162, 364-374 (2020). · Zbl 1474.26085 · doi:10.1007/s10474-020-01025-6
[7] V. L. Chinchane, D. B. Pachpatte, On new fractional integral inequalities involving convex functions using Hadamard fractional integral, Bull. Allahabad Math. Soc., 2016, 31(2), 183-192. · Zbl 1364.26010
[8] Z. Dahmani, A note on some new fractional results involving convex functions, Acta Math. Univ. Comenianae, 81(2)(2012), 241-246. · Zbl 1274.26034
[9] O. M. Duarte, Fractional Calculus for Scientists and Engineers, Dordrecht Heidelberg London New York: Springer, 2011. · Zbl 1251.26005
[10] J. D. Galeano, J. E. Napoles, E. Perez, A note on some integral inequalities in a generalized framework, Int. J. Appl. Math. Stat.; Vol. 60; Issue No. 1; Year 2021, 45-52.
[11] J. D. Galeano, J. E. Napoles, E. Perez, Concerning to the generalized Hermite-Hadamard integral inequality, submitted.
[12] J. D. Galeano, J. E. Napoles, E. Perez, On a general formulation of the fractional operator Riemann-Liouville and related inequalities, submitted.
[13] R. Gorenflo, F. Mainardi, Fractals and fractional calculus in continuum mechanics, 223-276, Springer, Vienna, 1997. · Zbl 0917.73004
[14] J. Hadamard, Essai sur l’etude des fonctions donnees par leur developpement de Taylor, J. Math. Pures Appl. (4) 8, 101-186 (1892) · JFM 24.0359.01
[15] J. Hadamard, Etude sur les proprietes des fonctions enti’eres et en particulier d’une fonction consideree par Riemann, J. Math. Pures Appl. 58, 171-215 (1893) · JFM 25.0698.03
[16] E. Kacar, Z. Kacar, H. Yildirim, Integral inequalities for Riemann-Liouville fractional integrals of a function with respect to another function, Iran. J. Math. Sci. Inform. 2018, 13, 1-13. · Zbl 1458.26011 · doi:10.22457/jmi.v13a1
[17] U. N. Katugampola, New Approach Generalized Fractional Integral, Applied Math and Comp. 218(2011),860-865. · Zbl 1231.26008 · doi:10.1016/j.amc.2011.03.062
[18] A. A. Kilbas, O. I. Marichev, S. G. Samko, Fractional Integrals and Derivatives, Theory and Applications, Gordon & Breach, Switzerland (1993). · Zbl 0818.26003
[19] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Amsterdam, Netherlands, Elsevier, Febrary 2006. · Zbl 1092.45003
[20] P. Korus, L. M. Lugo, J. E. Napoles Valdes, Integral inequalities in a generalized context, Studia Scientiarum Mathematicarum Hungarica 57 (3), 312-320 (2020) · Zbl 1474.26069 · doi:10.1556/012.2020.57.3.1464
[21] W. J. Liu, Q. A. Ngo, V. N. Huy, Several interesting integral inequalities, Journal of Math. Inequal., 3(2) (2009), 201-212. · Zbl 1177.26042
[22] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelsticity, Ed. Imperial College Press, 2010. · Zbl 1210.26004
[23] C. A. Monje, Y. Chen, B. M. Vinagre, D. Xue, V. Feliu-Batle, Fractional Order Systems and Controls, Fundamentals and Applications, Londres: Springer-Verlag London Limited, 2010. · Zbl 1211.93002
[24] S. Mubeen, G. M. Habibullah, k-Fractional Integrals and Application, Int. J. Contemp. Math. Sciences, Vol. 7, 2012, no. 2, 89 - 94 · Zbl 1248.33005
[25] J. E. Napoles V., A Generalized k-Proportional Fractional Integral Operators with General Kernel, submited
[26] J. E. Napoles V., Hermite-Hadamard inequality in generalized context, VI COLLOQUIUM ON APPLIED MATHEMATICS and II INTERNATIONAL MEETING OF APPLIED MATHEMATICS, UNIMILITAR, BOGOTA, COLOMBIA, NOVEMBER 11-13, 2020
[27] J. E. Napoles V., New generalized fractional integral inequalities of Hermite-Hadamard type for harmonically convex functions, XVI International Meeting of Mathematics, Barranquilla, Colombia NOVEMBER 17-20, 2020
[28] J. E. Napoles Valdes, F. Rabossi, A. D. Samaniego, Convex functions: Ariadne’s thread or Charlotte’s spiderweb?, Advanced Mathematical Models & Applications Vol.5, No.2, 2020, 176-191 · doi:10.11648/j.mma.20200503.16
[29] J. E. Napoles Valdes, J. M. Rodriguez, J. M. Sigarreta, New Hermite-Hadamard Type Inequalities Involving Non-Conformable Integral Operators, Symmetry 2019, 11, 1108; doi:10.3390/sym11091108
[30] T. F. Nonnenmacher, R. Metzler, Applications of Fractional Calculus Ideas to Biology, World Scientific, 1998.
[31] K. Oldham, J. Spanier, Applications of Differentiation and Integration to Arbitrary Order, Volume 111, Elsevier Science, 1974. · Zbl 0292.26011
[32] I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in science and engineering; v. 198, San Diego: Academic Press, 1999. · Zbl 0924.34008
[33] G. Rahman, T. Abdeljawad, F. Jarad, A. Khan, K. S. Nisar, Certain inequalities via generalized proportional Hadamard fractional integral operators, Adv. Diff. Eqs. 2019, 2019, Article ID 454, 10 pages. · Zbl 1485.45015
[34] S. Rashid, Z. Hammouch, F. Jarad, Y. M. Chu, New Estimates of Integral Inequalities via Generalized Proportional Fractional Integral Operator with Respect to Another Function, Fractals, doi: 10.1142/S0218348X20400277 · Zbl 1489.26009
[35] S. Rashid, F. Jarad, M. A. Noor, H. Kalsoom, Y. M. Chu, Inequalities by Means of Generalized Proportional Fractional Integral Operators with Respect to Another Function, Mathematics 2020, 7, 1225; doi:10.3390/math7121225
[36] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives, Gordon & Breach Science, Yverdon, 1993. · Zbl 0818.26003
[37] V. E. Tarasov, Fractional Dynamics; Applications of the Fractional Calculus to Dynamics of Particles, fields and Media, Dordrecht Heidelberg London New York: Springer, 2010. · Zbl 1214.81004
[38] H. U. Rehman, M. Darus, J. Salah, A Note on Caputo’s Derivative Operator Interpretation in Economy, Journal of Applied Mathematics, 2018, Article ID 1260240, 7 pages https://doi.org/10.1155/2018/1260240 · Zbl 1437.91125
[39] S. Umarov, S. Steinberg, Variable order differential equations with piecewise constant order-function and diffusion with changing modes, Z. Anal. Anwend. 28 (4) (2009) 431-450. · Zbl 1181.35359
[40] H. Yildirim, Z. Kirtay, Ostrowski inequality for generalized fractional integral and related inequalities, Malaya J. Mat. 2014, 2, 322-329. · Zbl 1371.26041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.