×

Sobolev embeddings in Musielak-Orlicz spaces. (English) Zbl 07849767

Summary: An embedding theorem for Sobolev spaces built upon general Musielak-Orlicz norms is offered. These norms are defined in terms of generalized Young functions which also depend on the \(x\) variable. Under minimal conditions on the latter dependence, a Sobolev conjugate is associated with any function of this type. Such a conjugate is sharp, in the sense that, for each fixed \(x\), it agrees with the sharp Sobolev conjugate in classical Orlicz spaces. Both Sobolev inequalities in the whole \(\mathbb{R}^n\) and Sobolev-Poincaré inequalities in domains are established. Compact Sobolev embeddings are also presented. In particular, optimal embeddings for standard Orlicz-Sobolev spaces, variable exponent Sobolev spaces, and double-phase Sobolev spaces are recovered and complemented in borderline cases. A key tool, of independent interest, in our approach is a new weak type inequality for Riesz potentials in Musielak-Orlicz spaces involving a sharp fractional-order Sobolev conjugate.

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)

References:

[1] Adams, D. R.; Hedberg, L. I., Function Spaces and Potential Theory, Grundlehren der mathematischen Wissenschaften, vol. 314, 1996, Springer-Verlag: Springer-Verlag Berlin, pp. xii+366
[2] Baasandorj, S.; Byun, S.-S.; Lee, H.-S., Gradient estimates for Orlicz double phase problems with variable exponents, Nonlinear Anal., 221, Article 112891 pp., 2022 · Zbl 1491.35206
[3] Baroni, P.; Colombo, M.; Mingione, G., Regularity for general functionals with double phase, Calc. Var. Partial Differ. Equ., 57, 2, Article 62 pp., 2018 · Zbl 1394.49034
[4] Berselli, L. C.; Breit, D.; Diening, L., Convergence analysis for a finite element approximation of a steady model for electrorheological fluids, Numer. Math., 132, 4, 657-689, 2016 · Zbl 1457.65180
[5] Breit, D.; Diening, L.; Schwarzacher, S., Finite element approximation of the \(p(\cdot)\)-Laplacian, SIAM J. Numer. Anal., 53, 1, 551-572, 2015 · Zbl 1312.65185
[6] Chlebicka, I.; De Filippis, C.; Koch, L., Boundary regularity for manifold constrained \(p(x)\)-harmonic maps, J. Lond. Math. Soc. (2), 104, 5, 2335-2375, 2021 · Zbl 1511.35129
[7] Chlebicka, I.; Gwiazda, P.; Świerczewska-Gwiazda, A.; Wróblewska-Kamińska, A., Partial Differential Equations in Anisotropic Musielak-Orlicz Spaces, Springer Monographs in Mathematics, 2021, Springer: Springer Cham, pp. xiii+389 · Zbl 1490.35001
[8] Cianchi, A., A sharp embedding theorem for Orlicz-Sobolev spaces, Indiana Univ. Math. J., 45, 1, 39-65, 1996 · Zbl 0860.46022
[9] Cianchi, A., Boundedness of solutions to variational problems under general growth conditions, Commun. Partial Differ. Equ., 22, 9-10, 1629-1646, 1997 · Zbl 0892.35048
[10] Cianchi, A., Strong and weak type inequalities for some classical operators in Orlicz spaces, J. Lond. Math. Soc. (2), 60, 1, 187-202, 1999 · Zbl 0940.46015
[11] Cianchi, A., Optimal Orlicz-Sobolev embeddings, Rev. Mat. Iberoam., 20, 2, 427-474, 2004 · Zbl 1061.46031
[12] Cianchi, A.; Stroffolini, B., An extension of Hedberg’s convolution inequality and applications, J. Math. Anal. Appl., 227, 1, 166-186, 1998 · Zbl 0914.42014
[13] Colombo, M.; Mingione, G., Regularity for double phase variational problems, Arch. Ration. Mech. Anal., 215, 2, 443-496, 2015 · Zbl 1322.49065
[14] Crespo-Blanco, Á.; Gasiński, L.; Harjulehto, P.; Winkert, P., A new class of double phase variable exponent problems: existence and uniqueness, J. Differ. Equ., 323, 182-228, 2022 · Zbl 1489.35041
[15] Cruz-Uribe, D. V.; Fiorenza, A., Variable Lebesgue Spaces. Foundations and Harmonic Analysis, Applied and Numerical Harmonic Analysis, 2013, Birkhäuser/Springer: Birkhäuser/Springer Heidelberg, pp. x+312 · Zbl 1268.46002
[16] Cruz-Uribe, D.; Hästö, P., Extrapolation and interpolation in generalized Orlicz spaces, Trans. Am. Math. Soc., 370, 6, 4323-4349, 2018 · Zbl 1391.46037
[17] De Filippis, C.; Mingione, G., Nonuniformly elliptic Schauder theory, Invent. Math., 234, 3, 1109-1196, 2023 · Zbl 1542.35140
[18] Diening, L., Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces \(L^{p ( \cdot )}\) and \(W^{k , p ( \cdot )}\), Math. Nachr., 268, 31-43, 2004 · Zbl 1065.46024
[19] Diening, L.; Harjulehto, P.; Hästö, P.; Růžička, M., Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017, 2011, Springer: Springer Heidelberg, pp. x+509 · Zbl 1222.46002
[20] Donaldson, T. K.; Trudinger, N. S., Orlicz-Sobolev spaces and imbedding theorems, J. Funct. Anal., 8, 52-75, 1971 · Zbl 0216.15702
[21] Edmunds, D. E.; Rákosník, J., Sobolev embeddings with variable exponent, Stud. Math., 143, 3, 267-293, 2000 · Zbl 0974.46040
[22] Edmunds, D. E.; Rákosník, J., Sobolev embeddings with variable exponent. II, Math. Nachr., 246/247, 53-67, 2002 · Zbl 1030.46033
[23] Fan, X., An imbedding theorem for Musielak-Sobolev spaces, Nonlinear Anal., 75, 4, 1959-1971, 2012 · Zbl 1272.46024
[24] Harjulehto, P.; Hästö, P., Sobolev inequalities with variable exponent attaining the values 1 and n, Publ. Mat., 52, 2, 347-363, 2008 · Zbl 1163.46022
[25] Harjulehto, P.; Hästö, P., The Riesz potential in generalized Orlicz spaces, Forum Math., 29, 1, 229-244, 2017 · Zbl 1412.46041
[26] Harjulehto, P.; Hästö, P., Orlicz Spaces and Generalized Orlicz Spaces, Lecture Notes in Mathematics, vol. 2236, 2019, Springer: Springer Cham, pp. x+167 · Zbl 1436.46002
[27] Harjulehto, P.; Hästö, P.; Słabuszewski, A., A revised condition for harmonic analysis in generalized Orlicz spaces on unbounded domains, Sept. 2023, arXiv e-prints
[28] Hästö, P.; Ok, J., Maximal regularity for local minimizers of non-autonomous functionals, J. Eur. Math. Soc. (JEMS), 24, 4, 1285-1334, 2022 · Zbl 1485.49044
[29] Ho, K.; Winkert, P., New embedding results for double phase problems with variable exponents and a priori bounds for corresponding generalized double phase problems, Calc. Var. Partial Differ. Equ., 62, 8, Article 227 pp., 2023 · Zbl 1528.35066
[30] Kováčik, O.; Rákosník, J., On spaces \(L^{p ( x )}\) and \(W^{k , p ( x )}\), Czechoslov. Math. J., 41(116), 4, 592-618, 1991 · Zbl 0784.46029
[31] Maz’ya, V. G., p-conductivity and theorems on imbedding certain functional spaces into a C-space, Dokl. Akad. Nauk SSSR, 140, 299-302, 1961 · Zbl 0114.31002
[32] Maz’ya, V., Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, vol. 342, 2011, Springer: Springer Heidelberg, pp. xxviii+866 · Zbl 1217.46002
[33] Méndez, O.; Lang, J., Analysis on Function Spaces of Musielak-Orlicz Type, Monographs and Research Notes in Mathematics, 2019, CRC Press: CRC Press Boca Raton, FL, pp. xiii+260 · Zbl 1500.46002
[34] Mizuta, Y.; Ohno, T.; Shimomura, T., Sobolev’s inequality for Musielak-Orlicz-Sobolev functions, Results Math., 78, 3, Article 90 pp., 2023 · Zbl 1519.46025
[35] Musielak, J., Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, vol. 1034, 1983, Springer-Verlag: Springer-Verlag Berlin, pp. iii+222 · Zbl 0557.46020
[36] Nakano, H., Modulared Semi-Ordered Linear Spaces, 1950, Maruzen Co. Ltd.: Maruzen Co. Ltd. Tokyo, pp. i+288 · Zbl 0041.23401
[37] Nekvinda, A., Hardy-Littlewood maximal operator on \(L^{p ( x )}(\mathbb{R})\), Math. Inequal. Appl., 7, 2, 255-265, 2004 · Zbl 1059.42016
[38] Ziemer, W. P., Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, Graduate Texts in Mathematics, vol. 120, 1989, Springer-Verlag: Springer-Verlag New York, pp. xvi+308 · Zbl 0692.46022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.