×

Effects of the dust size distribution on shock waves in dusty plasma. (English) Zbl 07848655

Summary: By using a Korteweg-deVries-Burgers (KdV-Burgers) equation and considering the dust size distribution, we have studied effects of the dust size distribution on the shock wave in dusty plasma. The dependence of characteristics of the shock wave on different dust size distributions has been given. It is found that the speed and amplitude of a shock wave considering the dust size distribution are larger than that of the dusty plasma with the averaged dust size. However, the width of a shock wave considering the dust size distribution is smaller than that of the dusty plasma with the averaged dust size.

MSC:

00-XX General and overarching topics; collections
76Lxx Shock waves and blast waves in fluid mechanics
82Dxx Applications of statistical mechanics to specific types of physical systems
Full Text: DOI

References:

[1] Horanyi, M., Charged dust dynamics in the solar system, Annu. Rev. Astron. Astrophys., 34, 383-418, 1996
[2] Goertz, C. K., Dusty plasma in the solar system, Rev. Geophys., 27, 271-292, 1989
[3] Havnes, O., Charged dust in the earths mesopause; effects on radar backscatter, Phys. Scr., 45, 535-544, 1992
[4] Mendis, D. A.; Rosenberg, M., Cosmic dusty plasma, Annu. Rev. Astron. Astrophys., 32, 419-463, 1994
[5] Rao, N. N.; Shukla, P. K.; Yu, M. Y., Dust-acoustic waves in dusty plasmas, Planet. Space Sci., 38, 543-546, 1990
[6] Barkan, A.; Merlino, R. L.; DAngelo, N., Laboratory observation of the dust-acoustic wave mode, Phys. Plasmas, 2, 3563-3565, 1995
[7] Duan, W. S.; Wan, G. X.; Wang, X. Y.; Lin, M. M., Waves in two-dimensional hexagonal crystal, Phys. Plasmas, 11, 4408-4413, 2004
[8] Shukla, P. K.; Eliasson, B., Nonlinear dynamics of large-amplitude dust acoustic shocks and solitary pulses in dusty plasmas, Phys. Rev. E, 86, 046402, 2012
[9] Shukla, P. K., Low-frequency modes in dusty plasmas, Phys. Scr., 45, 504-507, 1992
[10] Ghosh, S.; Gupta, M. R.; Chakrabarti, N.; Chaudhuri, M., Nonlinear wave propagation in a strongly coupled collisional dusty plasma, Phys. Rev. E, 83, 066406, 2011
[11] Choi, Y.; Dharuman, G.; Murillo, M. S., High-frequency response of classical strongly coupled plasmas, Phys. Rev. E, 100, 013206, 2019
[12] Shukla, P. K.; Silin, V. P., Dust ion-acoustic wave, Phys. Scr., 45, 508, 1992
[13] de Angelis, U.; Bingham, R.; Tsytovich, V. N., Dispersion properties of dusty plasmas, J. Plasma Phys., 42, 445-456, 1989
[14] Morfill, G. E.; Thomas, H., Plasma crystal, J. Vac. Sci. Technol, 14, 490-495, 1996
[15] Barkan, A.; D’Angelo, N.; Merlino, R. L., Experiments on ion-acoustic waves in dusty plasmas, Planet. Space Sci., 44, 239-242, 1990
[16] Pieper, J. B.; Goree, J., Dispersion of plasma dust acoustic waves in the strong-coupling regime, Phys. Rev. Lett., 77, 3137-3140, 1996
[17] Nunomura, S.; Samsonv, D.; Goree, J., Transverse waves in a two-dimensional screened-coulomb crystal (dusty plasma), Phys. Rev. Lett., 84, 5141-5144, 2000
[18] Misawa, T.; Ohno, N.; Asano, K.; Sawai, M.; Takamura, S.; Kaw, P. K., Experimental observation of vertically polarized transverse dust-lattice wave propagating in a one-dimensional strongly coupled dust chain, Phys. Rev. Lett., 86, 1219-1222, 2001
[19] Morfill, G.; Ivlev, A. V.; Jokipii, J. R., Charge fluctuation instability of the dust lattice wave, Phys. Rev. Lett., 83, 971-974, 1995
[20] Wang, X. G.; Bhattacharjee, A., Transverse electrostatic modes in a one-dimensional strongly coupled dusty plasma, Phys. Plasmas, 6, 4388-4391, 2000
[21] Wang, X. G.; Bhattacharjee, A.; Hu, S., Longitudinal and transverse waves in Yukawa crystals, Phys. Rev. Lett., 86, 2569-2572, 2001
[22] Nunomure, S.; Goree, J.; Hu, S.; Wang, X.; Bhattacharjee, A.; Avinash, K., Phonon spectrum in a plasma crystal, Phys. Rev. Lett., 89, 035001, 2002
[23] Nunomura, S.; Goree, J.; Hu, S.; Wang, X.; Bhattacharjee, A., Dispersion relations of longitudinal and transverse waves in two-dimensional screened coulomb crystals, Phys. Rev. E, 65, 066402, 2002
[24] Kalman, G.; Rosenberg, M.; DeWitt, H. E., Collective modes in strongly correlated Yukawa liquids: waves in dusty plasmas, Phys. Rev. Lett., 84, 6030-6033, 2000
[25] D’Angelo, N.; Song, B., The Kelvin-Helmholtz instability in dusty plasmas. planetary and space science, Planet. Space Sci., 38, 1577-1579, 1990
[26] Rubin-Zuzic, M.; Morfill, G.; Ivlev, A.; Pompl, R.; Klumov, B. A.; Bunk, W.; Thomas, H. M.; Rothermel, H.; Havnes, O.; Fouqut, A., Kinetic development of crystallization fronts in complex plasmas, Nat. Phys., 2, 181-185, 2006
[27] Feng, Y.; Goree, J.; Liu, B., Evolution of shear-induced melting in a dusty plasma, Phys. Rev. Lett., 104, 165003, 2010
[28] Nosenko, V.; Goree, J., Shear flows and shear viscosity in a two-dimensional Yukawa system (dusty plasma), Phys. Rev. Lett., 93, 155004, 2004
[29] Nosenko, V.; Zhdanov, S.; Ivlev, A. V.; Morfill, G.; Goree, J.; Piel, A., Heat transport in a two-dimensional complex (dusty) plasma at melting conditions, Phys. Rev. Lett., 100, 025003, 2008
[30] Feng, Y.; Goree, J.; Liu, B., Observation of temperature peaks due to strong viscous heating in a dusty plasma flow, Phys. Rev. Lett., 109, 4162-4176, 2012
[31] Melzer, A.; Nunomura, S.; Samsonov, D.; Ma, Z. W.; Goree, J., Laser-excited mach cones in a dusty plasma crystal, Phys. Rev. E, 62, 2000
[32] Avinash, K.; Zhu, P.; Nosenko, V.; Goree, J., Nonlinear compressional waves in a two-dimensional Yukawa lattice, Phys. Rev. E, 68, 046402, 2003
[33] Zhang, H.; Yang, Y.; Hong, X. R.; Qi, X.; Duan, W. S.; Yang, L., Freak oscillation in a dusty plasma, Phys. Rev. E, 95, 053207, 2017
[34] Tsai, Y. Y.; Tsai, J. Y.; L. I., Generation of acoustic rogue waves in dusty plasmas through three-dimensional particle focusing by distorted waveforms, Nat. Phys., 12, 573-577, 2016
[35] Shan, S. A.; Ur-Rehman, A.; Mushtaq, A., Ion-acoustic solitary waves in a positron beam plasma with electron trapping and nonextensivity effects, Phys. plasma, 24, 032104, 2017
[36] Ur-Rehman, H.; Mahmood, S.; Hussain, S., Magnetoacoustic nonlinear periodic (cnoidal) waves in plasmas, Phys. plasma, 24, 012106, 2017
[37] Saha, A., Nonlinear excitations for the positron acoustic shock waves in dissipative nonextensive electron-positron-ion plasmas, Phys. plasma, 24, 034502, 2017
[38] Hussain, S.; Hasnain, H., Magnetosonic wave in pair-ion electron collisional plasmas, Phys. plasma, 24, 032106, 2017
[39] Lin, W.; Murillo, M. S.; Feng, Y., Pressure and energy of compressional shocks in two-dimensional Yukawa systems, Phys. Rev. E, 100, 043203, 2019
[40] Marciante, M.; Murillo, M. S., Thermodynamic and kinetic properties of shocks in two-dimensional Yukawa systems, Phys. Rev. Lett., 118, 025001, 2017
[41] Meuris, P.; Verheest, F.; Lakhina, G. S., Influence of dust mass distributions on generalized Jeans-Buneman instabilities in dusty plasmas, Planet. Space Sci., 45, 449-454, 1997
[42] Brattli, A.; Havnes, O.; Melandso, F., The effect of a dust-size distribution on dust acoustic waves, J. Plasma Phys., 58, 691-704, 1997
[43] Horanyi, M.; Goertz, C. K., Coagulation of dust particles in a plasma, Astrophys. J., 361, 155-161, 1990
[44] Duan, W. S.; Parkes, J., Dust size distribution for dust acoustic waves in a magnetized dusty plasma, Phys. Rev. E., 68, 067402, 2003
[45] Duan, W.-S.; Shi, Y.-R., The effect of dust size distribution for two ion temperature dusty plasmas, Chaos Solitons Fractals, 18, 321-328, 2003 · Zbl 1129.82314
[46] Chow, V. W.; Mendis, D. A.; Rosenberg, M., Role of grain size and particle velocity distribution in secondary electron emission in space plasmas, J. Geophys. Res., 98, 19065-19076, 1993
[47] Meuris, P., The influence of a dust size distribution on the dust-acoustic mode, Planet. Space Sci. Planet. Space Sci., 45, 1171-1174, 1997
[48] El-Labany, S. K.; El-Taibany, W. F.; Behery, E. E., Stability of three-dimensional dust acoustic waves in a dusty plasma with two opposite polarity dust species including dust size distribution, Phys. Rev. E, 88, 023108, 2013
[49] Ma, Y.-R.; Wang, C.-L.; Zhang, J.-R.; Sun, J.-A.; Duan, W.-S.; Yang, L., Dust negative ion acoustic shock waves considering dust size distribution effect, Phys. Plasmas, 19, 113702, 2012
[50] Wan, G.-x.; Duan, W.-s.; Chen, Q.-h.; Wang, X.-y., Influences of the dust size and the dust charge variations to the low-frequency wave modes in a dusty plasma, Phys. Plasmas, 13, 082107, 2006
[51] Lai, S.-Y.; Houim, R. W.; Oran, E. S., Effects of particle size and density on dust dispersion behind a moving shock, Phys. Rev. Fluids, 3, 064306, 2018
[52] Naumkin, V. N.; Zhukhovitskii, D. I.; Molotkov, I.; Lipaev, M.; Fortov, V. E.; Thomas, H. M.; Huber, P.; Morfill, G. E., Density distribution of a dust cloud in three-dimensional complex plasmas, Phys. Rev. E, 94, 033204, 2016
[53] Behery, E. E.; Selim, M. M.; El-Taibany, W. F., Nonplanar dynamics of variable size dust grains in nonextensive dusty plasma, Phys. Plasmas, 22, 112105, 2015
[54] Nath, G., Shock wave driven out by a piston in a mixture of a non-ideal gas and small solid particles under the influence of the gravitation field with monochromatic radiation, Chin. J. Phys., 56, 2741-2752, 2018
[55] Zhang, L.-P.; Yuan, L. H., Nonlinear shock structures with contributions of arbitrary dust size distribution and nonadiabatic charge fluctuation in dusty plasmas, Chin. J. Phys., 55, 2448-2457, 2017 · Zbl 07815538
[56] Saakian, D. B.; Ghazaryan, M.; Hu, C. K., Punctuated equilibrium and shock waves in molecular models of biological evolution, Phys. Rev. E, 90, 022712, 2014
[57] Salomons, E.; Mareschal, M., Usefulness of the Burnett description of strong shock waves, Phys. Rev. Lett., 69, 269-272, 1992
[58] Uribe, F. J.; Velasco, R. M.; Garcia-Colin, L. S., Burnett description of strong shock waves, Phys. Rev. Lett., 81, 2044-C2047, 1998
[59] Holian, B. L.; Straub, G. K., Molecular dynamics of shock waves in three-dimensional solids: transition from nonsteady to steady waves in perfect crystals and implications for the rankine-hugoniot conditions, Phys. Rev. Lett, 43, 1598-1600, 1979
[60] Holian, B. L.; Hoover, W. G.; Moran, B.; Straub, G. K., Shock-wave structure via nonequilibrium molecular dynamics and Navier-Stokes continuum mechanics, Phys. Rev. A, 22, 2798-2808, 1980
[61] Holian, B. L., Modeling shock-wave deformation via molecular-dynamics, Phys. Rev. A, 37, 2562-2568, 1988
[62] Zhakhovski, V. V.; Zybin, S. V.; Nishihara, K.; I. Anisimov, S., Shock wave structure in lennard-jones crystal via molecular dynamics, Phys. Rev. Lett., 83, 1175-1178, 1999
[63] Germann, T. C.; Holian, B. L.; Lomdahl, P. S.; Ravelo, R., Orientation dependence in molecular dynamics simulations of shocked single crystals, Phys. Rev. Lett., 84, 5351-5354, 2000
[64] Holian, B. L.; Germann, T. C.; Maillet, J.-B.; White, C. T., Atomistic mechanism for hot spot initiation, Phys. Rev. Lett., 89, 285501, 2002
[65] Hatano, T., Spatiotemporal behavior of void collapse in shocked solids, Phys. Rev. Lett., 92, 015503, 2004
[66] Liu, H.; Kang, W.; Zhang, Q.; Zhang, Y.; Duan, H.; T. He, X., Molecular dynamics simulations of microscopic structure of ultra strong shock waves in dense helium, Front. Phys., 11, 115206, 2016
[67] Nguyen, J. H.; Holmes, N., Melting of iron at the physical conditions of the Earth’s core, Nature (London), 427, 339-342, 2004
[68] Zheng, J.; Cheng, Q.; Yunjun, G.; Shen, Z., Multishock compression properties of warm dense argon, Sci. Rep., 5, 16041, 2015
[69] Chaussy, C. H.; Brendel, W.; Schmiedt, E., Extracorpopreally induced destruction of Ykidney stones by shock waves, Lancet, 316, 1265-1268, 1980
[70] Delius, M.; Enders, G.; Xuan, Z.; Liebich, H.-G.; Brendel, W., Biological effects of shock waves: kidney damage by shock waves in dogsdose dependence, Ultrasound Med. Biol., 14, 117-122, 1988
[71] Nakagawa, A.; Manley, G. T.; Gean, A. D.; Ohtani, K.; Armonda, R.; Tsukamoto, A.; Yamamoto, H.; Takayama, K.; Tominaga, T., Mechanisms of primary blast-induced traumatic brain injury: insights from shock-wave research, J. Neurotrauma, 28, 1101-1119, 2011
[72] Richards, P. I., Shock waves on the highway, Oper. Res., 4, 42-51, 1956 · Zbl 1414.90094
[73] Tarver, C. M.; Chidester, S. K.; Nichols, A. L., Critical conditions for impact- and shock-induced hot spots in solid explosives, J. Phys.Chem., 100, 5794-5799, 1996
[74] Vilquin, A.; Boudet, J. F.; Kellay, H., Structure of velocity distributions in shock waves in granular gases with extension to molecular gases, Phys. Rev. E, 94, 022905, 2016
[75] Silva, L. O.; Marti, M.; Davies, J. R.; Fonseca, R. A.; Ren, C.; Tsung, F. S.; Mori, W. B., Proton shock acceleration in laser-plasma interactions, Phys. Rev. Lett., 92, 015002, 2004
[76] Wei, M. S., Ion acceleration by collisionless shocks in high-intensity-laser-underdense-plasma interaction, Phys. Rev. Lett., 93, 155003, 2004
[77] Fiuza, F.; Stockem, A.; Boella, E.; Fonseca, R. A.; Silva, L. O.; Haberberger, D.; Tochitsky, S.; Gong, C.; Mori, W. B.; Joshi, C., Laser-driven shock acceleration of monoenergetic ion beams, Phys. Rev. Lett., 109, 215001, 2012
[78] Campana, S., The shock break-out of GRB060218/SN2006aj, Nature (London), 442, 1008-1010, 2006
[79] Bednarz, J.; Ostrowski, M., Energy spectra of cosmic rays accelerated at ultrarelativistic shock waves, Phys. Rev. Lett., 80, 3911-3914, 1998
[80] Aharonian, F. A., High-energy particle acceleration in the shell of a supernova remnant, Nature(London), 432, 75-77, 2004
[81] Prang, R.; Pallier, L.; Hansen, K. C.; Howard, R.; Vourlidas, A.; Courtin, R.; Parkinson, C., An interplanetary shock traced by planetary auroral storms from the sun to saturn, Nature (London), 432, 78-81, 2004
[82] Goncharov, V. N., Early stage of implosion in inertial confinement fusion: shock timing and perturbation evolution, Phys. Plasmas, 13, 012702, 2006
[83] Betti, R.; Zhou, C. D.; Anderson, K. S.; Perkins, L. J.; Theobald, W.; Solodov, A. A., Shock ignition of thermonuclear fuel with high areal density, Phys. Rev. Lett., 98, 155001, 2007
[84] Perkins, L. J.; Betti, R.; LaFortune, K. N.; Williams, W. H., Shock ignition: a new approach to high gain inertial confinement fusion on the national ignition facility, Phys. Rev. Lett., 103, 045004, 2009
[85] Temporal, M.; Canaud, B.; Garbett, W. J.; Ramis, R., Uniformity of spherical shock wave dynamically stabilized by two successive laser profiles in direct-drive inertial confinement fusion implosions, Phys. Plasmas, 22, 102709, 2015
[86] Melands, F.; Shukla, P. K., Theory of dust-acoustic shocks planet, Space Sci., 43, 635-648, 1995
[87] Havnes, O.; Aslaksen, T.; Hartquist, T. W.; Li, F.; Melandso, F.; Morfill, G. E.; Nitter, T. J., Probing the properties of planetary ring dust by the observation of mach cones, Geophys. Res., 100, 1731-1734, 1995
[88] Veeresha, B. M.; Tiwari, S. K.; Sen, A.; Kaw, P. K.; Das, A., Nonlinear wave propagation in strongly coupled dusty plasmas, Phys. Rev. E, 81, 036407, 2010
[89] Barkan, A.; DAngelo, A.; Merlino, R. L., Charging of dust grains in a plasma, Phys Rev Lett., 73, 3093-3096, 1994
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.