×

A unified compatibility approach to solve certain classical engineering models involving Newtonian fluid flow due to stretching or shrinking surface: a comprehensive study. (English) Zbl 07848644

Summary: A unified compatibility method of differential equations is employed to solve some nonlinear two-point boundary value problems arising in the study of the classical model of viscous (Newtonian) fluid flow due to impermeable shrinking and stretching sheets. The solution procedure allows us to find the exact solution of the nonlinear models in the form of a closed-form exponential function. The solution methodology is easy as well as systematic and provides a unified treatment to already known ad hoc solutions of these models found in the literature before. Moreover, some new exact solutions of the various extended versions of this classical engineering boundary layer problem under different physical considerations are discussed. Hence, several misrepresented solutions related to this boundary layer model which are discussed before in the literature are identified, corrected, and clarified in this paper.

MSC:

76Wxx Magnetohydrodynamics and electrohydrodynamics
76Mxx Basic methods in fluid mechanics
76Dxx Incompressible viscous fluids
Full Text: DOI

References:

[1] Sakiadis, B. C., Boundary layer behavior on continuous solid surfaces: I. Boundary layer equations for two-dimensional and axisymmetric flow, AICHE J., 7, 26-28, 1961
[2] Sakiadis, B. C., Boundary layer behavior on continuous solid surfaces: II. The boundary layer on a continuous flat surface, AICHE J., 7, 221-225, 1961
[3] Crane, L. J., Flow past stretching plate, Z. Angew. Math. Phys., 21, 645-647, 1970
[4] Nasir, N. A.A. M.; Ishak, A.; Pop, I., Stagnation-point flow and heat transfer past a permeable quadratically stretching/shrinking sheet, Chin. J. Phys., 55, 2081-2091, 2017
[5] Bhatti, M. M.; Abbas, M. A.; Rashidi, M. M., A robust numerical method for solving stagnation point flow over a permeable shrinking sheet under the influence of MHD, Appl. Math. Comput., 316, 381-389, 2018 · Zbl 1426.76730
[6] Pal, D.; Mandal, G.; Vajravalu, K., Soret and Dufour effects on MHD convective-radiative heat and mass transfer of nanofluids over a vertical non-linear stretching/shrinking sheet, Appl. Math. Comput., 287, 184-200, 2016 · Zbl 1410.76475
[7] Patil, P. M.; Kulkarni, M.; Hiremath, P. S., Effects of surface roughness on mixed convective nanofluid flow past an exponentially stretching permeable surface, Chin. J. Phys., 64, 203-218, 2020 · Zbl 07830263
[8] Ullah, N.; Nadeem, S.; Khan, A. U.; Haq, R. U.; Tlili, I., Influence of metallic nanoparticles in water driven along a wavy circular cylinder, Chin. J. Phys., 63, 168-185, 2020 · Zbl 07829563
[9] Mahabaleshwar, U. S.; Nagaraju, K. R.; Sheremet, M. A.; Baleanu, D.; Lorenzini, E., Mass transpiration on Newtonian flow over a porous stretching/shrinking sheet with slip, Chin. J. Phys., 63, 130-137, 2020 · Zbl 07829559
[10] Waini, I.; Ishak, A.; Pop, I., Transpiration effects on hybrid nanofluid flow and heat transfer over a stretching/shrinking sheet with uniform shear flow, Alexandria Eng. J., 59, 91-99, 2020
[11] Merkin, J. H.; Pop, I., Stagnation point flow past a stretching/shrinking sheet driven by Arrhenius kinetics, Appl. Math. Comput., 337, 583-590, 2018 · Zbl 1427.76059
[12] Waini, I.; Ishak, A.; Pop, I., Unsteady flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid, Int. J. Heat Mass Transf., 136, 288-297, 2019
[13] U. Khan, A.; Hussain, S. T.; Nadeem, S., Existence and stability of heat and fluid flow in the presence of nanoparticles along a curved surface by mean of dual nature solution, Appl. Math. Comput., 353, 66-81, 2019 · Zbl 1429.76110
[14] Jena, S.; Dash, G. C.; Mishra, S. R., Chemical reaction effect on MHD viscoelastic fluid flow over a vertical stretching sheet with heat source/sink, Ain Shams Eng. J., 9, 1205-1213, 2018
[15] Bilal, M.; Sagheer, M.; Hussain, S., Numerical study of magnetohydrodynamics and thermal radiation on Williamson nanofluid flow over a stretching cylinder with variable thermal conductivity, Alexandria Eng. J., 57, 3281-3289, 2018
[16] Hayat, T.; Qayyum, S.; Alsaedi, A.; Ahmad, B., Entropy generation minimization: Darcy-Forchheimer nanofluid flow due to curved stretching sheet with partial slip, Int. Comm. Heat Mass Transf., 111, 104445, 2020
[17] Chen, X.; Yang, W.; Zhang, X.; Liu, F., Unsteady boundary layer flow of viscoelastic MHD fluid with a double fractional maxwell model, Appl. Math. Lett., 95, 143-149, 2019 · Zbl 1448.76017
[18] Sivakumar, T. R.; Baiju, S., Shooting type Laplace-Adomian decomposition algorithm for nonlinear differential equations with boundary conditions at infinity, Appl. Math. Lett., 24, 1702-1708, 2011 · Zbl 1221.35032
[19] Malvandi, A.; Hedayati, F.; Ganji, D. D., Nanofluid flow on the stagnation point of a permeable non-linearly stretching/shrinking sheet, Alexandria Eng. J., 57, 2199-2208, 2018
[20] Turkyilmazoglu, M., Flow of a micropolar fluid due to a porous stretching sheet and heat transfer, Int. J. Non-Linear Mech., 83, 59-64, 2016
[21] Uddin, M. J.; Sohail, A.; Beg, O. A.; Ismai, A. I.M., Numerical solution of MHD slip flow of a nanofluid past a radiating plate with Newtonian heating: a Lie group approach, Alexandria Eng. J., 57, 2455-2464, 2018
[22] Sithole, H.; Mondal, H.; Sibanda, P., Entropy generation in a second grade magnetohydrodynamic nanofluid flow over a convectively heated stretching sheet with nonlinear thermal radiation and viscous dissipation, Res. Phys., 9, 1077-1085, 2018
[23] Hayat, T.; Rashid, M.; Alsaedi, A.; Ahmad, B., Flow of nanofluid by nonlinear stretching velocity, Res. Phys., 8, 1104-1109, 2018
[24] Krishna, M. V.; Chamkha, A. J., Hall and ion slip effects on MHD rotating boundary layer flow of nanofluid past an infinite vertical plate embedded in a porous medium, Res. Phys., 15, 102652, 2019
[25] Seth, G. S.; Bhattacharyya, A.; Mishra, M. K., Study of partial slip mechanism on free convection flow of viscoelastic fluid past a nonlinearly stretching surface, Comput. Ther. Sci., 11, 105-117, 2019
[26] Seth, G. S.; Bhattacharyya, A.; Kumar, R.; Mishra, M. K., Modelling and numerical simulation of hydromagnetic natural convection Casson fluid flow with nth order chemical reaction and Newtonian heating in porous medium, J. Porous Med., 22, 1141-1157, 2019
[27] S. Seth, G.; K. Singha, A.; Mandal, M. S.; Banerjee, A.; Bhattacharyya, K., MHD stagnation-point flow and heat transfer past a non-isothermal shrinking/stretching sheet in porous medium with heat sink or source effect, Int. J. Mech. Sci., 134, 98-111, 2017
[28] Bhattacharyya, A.; Seth, G. S.; Kumar, R., Modeling of viscoelastic fluid flow past a non-linearly stretching surface with convective heat transfer: OHAM analysis, Math. Model. Sci. Comput. Appl., 308, 297-312, 2020 · Zbl 1441.80007
[29] Ali, A.; Marwat, D. N.K.; Asghar, S., New approach to the exact solution of viscous flow due to stretching (shrinking) and porous sheet, Res. Phys., 7, 1122-1127, 2017
[30] Freidoonimehr, N.; Rahimi, A. B., Exact-solution of entropy generation for MHD nanofluid flow induced by a stretching/shrinking sheet with transpiration: Dual solution, Adv. Pow. Tech., 28, 671-685, 2017
[31] Khan, Z. H.; Qasim, M.; Haq, R. U.; Al-Mdallal, Q. M., Closed form dual nature solutions of fluid flow and heat transfer over a stretching/shrinking sheet in a porous medium, Chin. J. Phys., 55, 1284-1293, 2017
[32] Mahabaleshwar, U. S.; Nagaraju, K. R.; Sheremet, M. A.; Baleanu, D.; Lorenzini, E., Mass transpiration on Newtonian flow over a porous stretching/shrinking sheet with slip, Chin. J. Phys., 63, 130-137, 2020 · Zbl 07829559
[33] Zhao, J., Axisymmetric convection flow of fractional maxwell fluid past a vertical cylinder with velocity slip and temperature jump, Chin. J. Phys., 67, 501-511, 2020 · Zbl 07833202
[34] Aziz, T.; Mahomed, F. M.; Mason, D. P., A unified compatibility method for exact solutions of nonlinear flow models of Newtonian and non-Newtonian fluids, Int. J. Non-Linear Mech., 78, 142-155, 2016
[35] Asghar, S.; Ahmad, A.; Alsaedi, A., Flow of a viscous fluid over an impermeable shrinking sheet, Appl. Math. Lett., 26, 1165-1168, 2013 · Zbl 1308.76085
[36] Miklavcic, M.; Wang, C. Y., Viscous flow due to a shrinking sheet, Quart. Appl. Math., 64, 283-290, 2006 · Zbl 1169.76018
[37] Fang, T.; Zhang, J., Closed-form exact solutions of MHD viscous flow over a shrinking sheet, Commun. Nonlinear Sci. Numer. Simul., 14, 2853-2857, 2009 · Zbl 1221.76142
[38] Cortell, R., On a certain boundary value problem arising in shrinking sheet flows, Appl. Math. Comput., 217, 4086-4093, 2010 · Zbl 1427.76018
[39] Fernández, F. M., On a perturbation treatment of a model for MHD viscous flow, Appl. Math. Comput., 217, 2307-2310, 2010 · Zbl 1342.76133
[40] Noor, N. F.M.; Kechil, S. A.; Hashim, I., Simple non-perturbative solution for MHD viscous flow due to a shrinking sheet, Commun Nonlinear Sci Numer Simul., 15, 144-148, 2010 · Zbl 1221.76154
[41] Abbasbandy, S.; Ghehsareh, H. R., Solutions for MHD viscous flow due to a shrinking sheet by Hankel-Padé method, Int. J. Numer. Meth. Heat Fluid Flow., 23, 2, 388-400, 2013 · Zbl 1356.76415
[42] Pavlov, K. B., Magnetohydrodynamic flow of an incompressible viscous fluid caused by the deformation of a plane surface, Magn. Gidrodin., 4, 146-147, 1974
[43] Andersson, H. I., MHD flow of a viscous fluid past a stretching surface, Acta Mech., 95, 227-230, 1992 · Zbl 0753.76192
[44] Wang, C. Y., Flow due to a stretching boundary with partial slip-an exact solution of the Navier-Stokes equations, Chem. Eng. Sci., 57, 3745-3747, 2002
[45] Andersson, H. I., Slip flow past a stretching surface, Acta Mech., 158, 121-125, 2002 · Zbl 1013.76020
[46] Wu, L., A slip model for rarefied gas flows at arbitrary Knudsen number, Appl. Phys. Lett., 93, 253103, 2008
[47] Rosca, A. V.; Pop, I., Flow and heat transfer over a vertical permeable stretching/shrinking sheet with a second order slip, Int. J. Heat Mass Tranf., 60, 355-364, 2013
[48] Vajravelu, K.; Roper, T., Flow and heat transfer in a second grade fluid over a stretching sheet, Int. J. Nonlinear Mech., 34, 1031-1036, 1999 · Zbl 1006.76005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.