×

Finite element simulation of bioconvection and Cattaneo-Christov effects on micropolar based nanofluid flow over a vertically stretching sheet. (English) Zbl 07848631

Summary: An analysis for varying temperature with bioconvection of self-motive microorganisms mixed in micropolar based nanofluids is carried out with a reliable computational procedure. The overall transportation associated with momentum, energy, and concentration takes place near a stagnation point over stretching surface. The very interest of this exploration corresponds to the implications of multi-buoyancy, thermo-phoresis, micro-rotation, thermal radiation, suction/injection, and magnetic field. The physical consideration is formulated with a partial derivative which is then transmuted to ordinary differential format with the utilization of similarity transforms. The variations of rescaled microorganism density, fluid velocity, fluid temperature, micromotion vector, and volume fraction of nano-sized material are examined with two aspects for buoyancy (opposing \(\lambda < 0\) and assisting \(\lambda > 0\)) by harnessing Finite Element (FE) procedure. The related coding is run on Matlab for varying values of specific parameters. The fluid speed and micromotion make directly increasing response to the parameter of buoyancy ratio (Nr) and bioconvection Raleigh number (Rb). The temperature of fluid rises proportionally with higher values of each of the thermophoretic parameter Nt, radiative parameter Rd, and Biot number Bi. Both the larger microrotation parameter K and the relaxation time parameter \(\gamma_T\) raised the Nusselt number notably. The optimal convergence of the FE solution was checked by varying the mesh and validity of the numerical scheme was ascertained through comparison with literature concerned.

MSC:

76-XX Fluid mechanics
74-XX Mechanics of deformable solids
Full Text: DOI

References:

[1] Lok, Y. Y.; Ishak, A.; Pop, I., Oblique stagnation slip flow of a micropolar fluid towards a stretching/shrinking surface: a stability analysis, Chin. J. Phys., 56, 6, 3062-3072, 2018 · Zbl 07822220
[2] Ali, B.; Rizwan Ali, H.; Dildar, H.; Hussain, S., Finite element study of mhd impacts on the rotating flow of casson nanofluid with the double diffusion cattaneo christov heat flux model, Mathematics, 8, 9, 1-17, 2020
[3] Saleem, S.; Awais, M.; Nadeem, S.; Sandeep, N.; Mustafa, M., Theoretical analysis of upper-convected maxwell fluid flow with cattaneo-christov heat flux model, Chin. J. Phys., 55, 4, 1615-1625, 2017 · Zbl 1539.76281
[4] Eringen, A., Simple microfluids, Int. J. Eng. Sci., 2, 2, 205-217, 1964 · Zbl 0136.45003
[5] Eringen, A. C., Theory of micropolar fluids theory of micropolar fluids, J. Math.Mech., 16, 1, 1-18, 1966
[6] Ashraf, M.; Bashir, S., Numerical simulation of MHD stagnation point flow and heat transfer of a micropolar fluid towards a heated shrinking sheet, Int. J. Numer. Methods Fluids, 69, 2, 384-398, 2012 · Zbl 1245.76156
[7] Baag, S.; Mishra, S. R.; Dash, G. C.; Acharya, M. R., Numerical investigation on MHD micropolar fluid flow toward a stagnation point on a vertical surface with heat source and chemical reaction, Journal of King Saud University - Engineering Sciences, 29, 1, 75-83, 2017
[8] Iyengar, T.; Vani, V. G., Oscillatory flow of a micropolar fluid generated by the rotary oscillations of two concentric spheres, Int. J. Eng. Sci., 42, 10, 1035-1059, 2004
[9] Das, K., Influence of thermophoresis and chemical reaction on mhd micropolar fluid flow with variable fluid properties, Int. J. Heat Mass Transf., 55, 23-24, 7166-7174, 2012
[10] Hassanien, I.; Gorla, R., Heat transfer to a micropolar fluid from a non-isothermal stretching sheet with suction and blowing, Acta Mech., 84, 1-4, 191-199, 1990
[11] Khashi’ie, N. S.; Arifin, N. M.; Nazar, R.; Hafidzuddin, E. H.; Wahi, N.; Pop, I., Magnetohydrodynamics (mhd) axisymmetric flow and heat transfer of a hybrid nanofluid past a radially permeable stretching/shrinking sheet with joule heating, Chin. J. Phys., 64, 251-263, 2020 · Zbl 07830267
[12] Mahabaleshwar, U.; Nagaraju, K.; Sheremet, M.; Baleanu, D.; Lorenzini, E., Mass transpiration on newtonian flow over a porous stretching/shrinking sheet with slip, Chin. J. Phys., 63, 130-137, 2020 · Zbl 07829559
[13] Ismail, N. S.; Arifin, N. M.; Nazar, R.; Bachok, N., Stability analysis of unsteady mhd stagnation point flow and heat transfer over a shrinking sheet in the presence of viscous dissipation, Chin. J. Phys., 57, 116-126, 2019 · Zbl 1539.76272
[14] Crane, L. J., Flow past a stretching plate, Zeitschrift für angewandte Mathematik und Physik ZAMP, 21, 4, 645-647, 1970
[15] Miklavčič, M.; Wang, C., Viscous flow due to a shrinking sheet, Q top Q. Appl. Math., 64, 2, 283-290, 2006 · Zbl 1169.76018
[16] Gupta, P.; Gupta, A., Heat and mass transfer on a stretching sheet with suction or blowing, Can. J. Chem. Eng., 55, 6, 744-746, 1977
[17] Rostami, M. N.; Dinarvand, S.; Pop, I., Dual solutions for mixed convective stagnation-point flow of an aqueous silica-alumina hybrid nanofluid, Chin. J. Phys., 56, 5, 2465-2478, 2018
[18] Nasir, N. A.A. M.; Ishak, A.; Pop, I., Stagnation-point flow and heat transfer past a permeable quadratically stretching/shrinking sheet, Chin. J. Phys., 55, 5, 2081-2091, 2017
[19] Tc, C., Stagnation-point flow towards a stretching plate, J. Phys. Soc. Jpn., 63, 6, 2443-2444, 1994
[20] Mahapatra, T. R.; Gupta, A., Heat transfer in stagnation-point flow towards a stretching sheet, Heat Mass Transfer, 38, 6, 517-521, 2002
[21] Uddin, M. S.; Bhattacharyya, K., Thermal boundary layer in stagnation-point flow past a permeable shrinking sheet with variable surface temperature, Propul. Power Res., 6, 3, 186-194, 2017
[22] Abdal, S.; Ali, B.; Younas, S.; Ali, L.; Mariam, A., Thermo-diffusion and multislip effects on mhd mixed convection unsteady flow of micropolar nanofluid over a shrinking/stretching sheet with radiation in the presence of heat source, Symmetry (Basel), 12, 1, 1-17, 2020
[23] Hamid, A.; Khan, M., Thermo-physical characteristics during the flow and heat transfer analysis of go-nanoparticles adjacent to a continuously moving thin needle, Chin. J. Phys., 64, 227-240, 2020 · Zbl 07830265
[24] Choi, S. U.; Eastman, J. A., Enhancing thermal conductivity of fluids with nanoparticles, Technical Report, 1995, Argonne National Lab., IL (United States)
[25] Bachok, N.; Ishak, A.; Pop, I., Unsteady boundary-layer flow and heat transfer of a nanofluid over a permeable stretching/shrinking sheet, Int. J. Heat Mass Transf., 55, 7-8, 2102-2109, 2012
[26] Hussanan, A.; Salleh, M. Z.; Khan, I.; Chen, Z.-M., Unsteady water functionalized oxide and non-oxide nanofluids flow over an infinite accelerated plate, Chin. J. Phys., 62, 115-131, 2019 · Zbl 07828443
[27] Nadeem, S.; Haq, R. U.; Khan, Z., Numerical solution of non-newtonian nanofluid flow over a stretching sheet, Appl. Nanosci., 4, 5, 625-631, 2014
[28] Ali, B.; Nie, Y.; Khan, S. A.; Sadiq, M. T.; Tariq, M., Finite element simulation of multiple slip effects on mhd unsteady maxwell nanofluid flow over a permeable stretching sheet with radiation and thermo-diffusion in the presence of chemical reaction, Processes, 7, 9, 1-18, 2019
[29] Gireesha, B.; Umeshaiah, M.; Prasannakumara, B.; Shashikumar, N.; Archana, M., Impact of nonlinear thermal radiation on magnetohydrodynamic three dimensional boundary layer flow of jeffrey nanofluid over a nonlinearly permeable stretching sheet, Physica A, 549, 1, 1-16, 2020 · Zbl 07572669
[30] Ashraf, E. E., Advected bioconvection and the hydrodynamics of bounded biflagellate locomotion, 2011, University of Glasgow, Ph.D. thesis
[31] Kuznetsov, A., Bio-thermal convection induced by two different species of microorganisms, Int. Commun. Heat Mass Transfer, 38, 5, 548-553, 2011
[32] Raju, C.; Sandeep, N., Heat and mass transfer in mhd non-newtonian bio-convection flow over a rotating cone/plate with cross diffusion, J. Mol. Liq., 215, 115-126, 2016
[33] Atif, S.; Hussain, S.; Sagheer, M., Effect of thermal radiation and variable thermal conductivity on magnetohydrodynamics squeezed flow of carreau fluid over a sensor surface, Journal of Nanofluids, 8, 4, 806-816, 2019
[34] Ali, L.; Liu, X.; Ali, B.; Mujeed, S.; Abdal, S., Finite element simulation of multi-slip effects on unsteady mhd bioconvective micropolar nanofluid flow over a sheet with solutal and thermal convective boundary conditions, Coatings, 9, 12, 1-22, 2019
[35] baron Fourier, J. B.J., Théorie analytique de la chaleur, 1822, F. Didot
[36] Cattaneo, C., Sulla conduzione del calore, Atti Sem. Mat. Fis. Univ. Modena, 3, 83-101, 1948 · Zbl 0035.26203
[37] Christov, C., On frame indifferent formulation of the maxwell-cattaneo model of finite-speed heat conduction, Mech. Res. Commun., 36, 4, 481-486, 2009 · Zbl 1258.80001
[38] Hayat, T.; Farooq, M.; Alsaedi, A.; Al-Solamy, F., Impact of cattaneo-christov heat flux in the flow over a stretching sheet with variable thickness, AIP Adv., 5, 8, 087159, 2015
[39] Waqas, M.; Hayat, T.; Farooq, M.; Shehzad, S.; Alsaedi, A., Cattaneo-christov heat flux model for flow of variable thermal conductivity generalized burgers fluid, J. Mol. Liq., 220, 642-648, 2016
[40] Khashiie, N. S.; Arifin, N. M.; Hafidzuddin, E. H.; Wahi, N.; Ilias, M. R., Magnetohydrodynamics (mhd) flow and heat transfer of a doubly stratified nanofluid using cattaneo-christov model, Universal Journal of Mechanical Engineering, 7, 4, 206-214, 2019
[41] Ishak, A.; Nazar, R.; Pop, I., Mixed convection boundary layers in the stagnation-point flow toward a stretching vertical sheet, Meccanica, 41, 5, 509-518, 2006 · Zbl 1163.76412
[42] Ishak, A.; Nazar, R.; Pop, I., Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet, Heat and Mass Transfer/Waerme- und Stoffuebertragung, 44, 8, 921-927, 2008
[43] Khan, S. A.; Nie, Y.; Ali, B., Multiple slip effects on mhd unsteady viscoelastic nano-fluid flow over a permeable stretching sheet with radiation using the finite element method, SN Applied Sciences, 2, 1, 1-14, 2020
[44] Ali, L.; Liu, X.; Ali, B.; Mujeed, S.; Abdal, S., Finite element analysis of thermo-diffusion and multi-slip effects on mhd unsteady flow of casson nano-fluid over a shrinking/stretching sheet with radiation and heat source, Applied Sciences, 9, 23, 1-21, 2019
[45] Sajjad HussainBagh Ali, F. A., MHD Boundary layer flow and heat transfer of a nanofluid over a shrinking sheet with mass suction and chemical reaction, Journal of Applied Environmental and Biological Sciences, 4, 4, 518-527, 2015
[46] Abdal, S.; Hussain, S.; Ahmad, F.; Ali, B., Hydromagnetic stagnation point flow of micropolar fluids due to a porous stretching surface with radiation and viscous dissipation, Sci.Int.(Lahore), 27, 5, 3965-3971, 2015
[47] Ali, L.; Liu, X.; Ali, B.; Mujeed, S.; Abdal, S.; Mutahir, A., The impact of nanoparticles due to applied magnetic dipole in micropolar fluid flow using the finite element method, Symmetry (Basel), 12, 4, 1-20, 2020
[48] Ali, B.; Naqvi, R. A.; Nie, Y.; Khan, S. A.; Sadiq, M. T.; Rehman, A. U.; Abdal, S., Variable viscosity effects on unsteady mhd an axisymmetric nanofluid flow over a stretching surface with thermo-diffusion: fem approach, Symmetry (Basel), 12, 2, 1-15, 2020
[49] Khan, S. A.; Nie, Y.; Ali, B., Multiple slip effects on magnetohydrodynamic axisymmetric buoyant nanofluid flow above a stretching sheet with radiation and chemical reaction, Symmetry (Basel), 11, 9, 1-22, 2019
[50] Uddin, M.; Rana, P.; Bég, O. A.; Ismail, A. M., Finite element simulation of magnetohydrodynamic convective nanofluid slip flow in porous media with nonlinear radiation, Alexandria Engineering Journal, 55, 2, 1305-1319, 2016
[51] Ibrahim, W.; Gadisa, G., Finite element method solution of boundary layer flow of powell-eyring nanofluid over a nonlinear stretching surface, J. Appl. Math., 2019, 1-16, 2019 · Zbl 1442.76067
[52] Ali, B.; Yu, X.; Sadiq, M. T.; Rehman, A. U.; Ali, L., A finite element simulation of the active and passive controls of the mhd effect on an axisymmetric nanofluid flow with thermo-diffusion over a radially stretched sheet, Processes, 8, 2, 1-19, 2020
[53] Reddy, J. N., Solutions manual for an introduction to the finite element method, 1993, McGraw-Hill
[54] Jyothi, K.; Reddy, P. S.; Reddy, M. S., Carreau nanofluid heat and mass transfer flow through wedge with slip conditions and nonlinear thermal radiation, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41, 10, 1-15, 2019
[55] Swapna, G.; Kumar, L.; Rana, P.; Singh, B., Finite element modeling of a double-diffusive mixed convection flow of a chemically-reacting magneto-micropolar fluid with convective boundary condition, J. Taiwan Inst. Chem. Eng., 47, 18-27, 2015
[56] Gupta, D.; Kumar, L.; Beg, O. A.; Singh, B., Finite-element analysis of transient heat and mass transfer in microstructural boundary layer flow from a porous stretching sheet, Computational Thermal Sciences: An International Journal, 6, 2, 155-169, 2014
[57] Khan, Z. H.; Khan, W. A.; Qasim, M.; Shah, I. A., Mhd stagnation point ferrofluid flow and heat transfer toward a stretching sheet, IEEE Trans. Nanotechnol., 13, 1, 35-40, 2013
[58] Nazar, R.; Amin, N.; Filip, D.; Pop, I., Unsteady boundary layer flow in the region of the stagnation point on a stretching sheet, Int. J. Eng. Sci., 42, 11-12, 1241-1253, 2004 · Zbl 1211.76042
[59] Qasim, M.; Khan, I.; Shafie, S., Heat transfer in a micropolar fluid over a stretching sheet with newtonian heating, PLoS ONE, 8, 4, e59393, 2013
[60] Tripathy, R.; Dash, G.; Mishra, S.; Hoque, M. M., Numerical analysis of hydromagnetic micropolar fluid along a stretching sheet embedded in porous medium with non-uniform heat source and chemical reaction, Engineering science and technology, an international journal, 19, 3, 1573-1581, 2016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.