×

Growth of matter fluctuations in \(f(R, T)\) gravity. (English) Zbl 07848628

Summary: In this work, I present for the first time the analysis concerning the growth of matter fluctuations in the framework of \(f(R, T)\) modified gravity where I presume \(f(R, T) = R + \lambda T\), where \(R\) denote the Ricci scalar, \(T\) the trace of energy momentum tensor and \(\lambda\) a constant. I first solve the Friedman equations assuming a dust universe (\(\omega = 0\)) for the Hubble parameter \(H(z)\) and then employ it in the equation of matter density fluctuations \(\delta(z)\) to solve for \(\delta(z)\) and the growth rate \(f(z)\). Next, I proceed to show the behavior of \(f(z)\) and \(\delta(z)\) with redshift for some values of \(\lambda\) with observational constraints. Finally, following the prescription of [31], I present an analytical expression for the growth index \(\gamma\) which is redshift dependent and the expression reduces to \(3/5\) for \(\lambda = 0\), which is the growth index for a dust universe.

MSC:

83Fxx Relativistic cosmology
83Dxx Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83-XX Relativity and gravitational theory

References:

[1] S. Perlmutter et al.,Measurements of Omega and Lambda from 42 High-Redshift Supernovae, Astrophys. J. 517, 565 (1999) · Zbl 1368.85002
[2] Basilakos, S., Linear growth in power law f(t) gravity, Phys. Rev. D, 93, 083007, 2016
[3] L. Amendola and S. Tsujikawa, Dark Energy Theory and Observations, Cambridge University Press, Cambridge UK, (2010); R. R. Caldwell and M. Kamionkowski, The Physics of Cosmic Acceleration, Ann. Rev. Nucl. Part. Sci., 59, 397, (2009), arXiv:0903.0866 · Zbl 1203.83061
[4] Harko, T., F (r, t) gravity, Phys. Rev. D, 84, 024020, 2011
[5] S. Capozziello, Curvature Quintessence, Int. J. Mod. Phys. D11, 483 (2002) · Zbl 1062.83565
[6] Zaregonbadi, R., Dark matter from f (r, t) gravity, Phys. Rev. D, 94, 084052, 2016
[7] Sun, G.; Huang, Y. C., The cosmology in f(r,\( \tau )\) gravity without dark energy, Int. J. Mod. Phys. D, 25, 1650038, 2016 · Zbl 1336.83038
[8] F. Rocha, et al., Study of the charged super-chandrasekhar limiting mass white dwarfs in the f(r,t) gravity, 2019. ArXiv:1911.08894.
[9] dos Santos, S. I.; Carvalho, G. A.; Moraes, P. H.R. S.; Lenzi, C. H.; Malheiro, M., A conservative energy-momentum tensor in the f (r, t) gravity and its implications for the phenomenology of neutron stars, Eur. Phys. J. Plus, 134, 398, 2019
[10] E. Elizalde and M. Khurshudyan, Wormholes with \(\rho ( R , R^{^\prime} )\) matter in f(R,T) gravity, Phys. Rev. D, 99, 024051 (2019); E. Elizalde and M. Khurshudyan, Wormhole formation in f(R,T) gravity: Varying Chaplygin gas and barotropic fluid, Phys. Rev. D, 98, 123525 (2018); P.H.R.S. Moraes and P. K. Sahoo, Nonexotic matter wormholes in a trace of the energy-momentum tensor squared gravity, Phys. Rev. D, 97, 024007 (2018); P. K. Sahoo, P.H.R.S. Moraes and P. Sahoo, Wormholes in \(R^2\)-gravity within the f (R, T) formalism, Eur. Phys. J. C, 78, 46 (2018); P. K. Sahoo, P.H.R.S. Moraes, P. Sahoo and G. Ribeiro, Phantom fluid supporting traversable wormholes in alternative gravity with extra material terms, Int. J. Mod. Phys. D, 27, 1950004 (2018); P.H.R.S. Moraes and P. K. Sahoo, Modeling wormholes in f(R,T) gravity, Phys. Rev. D, 96, 044038 (2017); P.H.R.S. Moraes, R.A.C. Correa and R.V. Lobato, Analytical general solutions for static wormholes in f (R, T) gravity, J. Cosm. Astrop. Phys., 07, 029 (2017); T. Azizi, Wormhole Geometries in f(R,T) Gravity, Int. J. Theor. Phys. 52, 3486 (2013).
[11] Alves, M. E.S.; Moraes, P. H.R. S.; de Araujo, J. C.N.; Malheiro, d. M., Gravitational waves in the \(f ( r , t )\) theory of gravity, Phys. Rev. D, 94, 024032, 2016
[12] [arXiv: 1907.13460] · Zbl 1442.83028
[13] [arXiv: 1907.08682] · Zbl 1435.83006
[14] [arXiv:2003.14211]
[15] [arXiv:2007.06790]
[16] [arXiv:2006.04336]
[17] [arXiv:2005.11163]
[18] [arXiv:2001.06569]
[19] [arXiv:2004.04684]
[20] [arXiv:1511.08083]
[21] Peebles, P. J.E., Principles of physical cosmology, 1993, Princeton University Press: Princeton University Press Princeton New Jersey · Zbl 1422.83022
[22] L. Wang and J. P. Steinhardt, Cluster abundance constraints for cosmological models with a time-varying, spatially inhomogeneous energy component with negative pressure, Astrophys. J, 508, 483 (1998); E. V. Linder and A. Jenkins, Testing dark matter clustering with redshift space distortions, Mon. Not. Roy. Astron. Soc., 346, 573 (2003); A. Lue, R. Scossimarro, and G. D. Starkman, Probing Newton’s constant on vast scales: Dvali-Gabadadze-Porrati gravity, cosmic acceleration, and large scale structure, Phys. Rev. D, 69, 124015 (2004).
[23] E. V. Linder, and R. N. Cahn, Parameterized beyond-Einstein growth, Astrop. Phys., 28, 481 (2007)
[24] Nesseris, S.; Perivolaropoulos, L., Testing \(\lambda\) CDM with the growth function \(\delta ( a )\): Current constraints, Phys. Rev. D, 77, 023504, 2008
[25] H. Wei, Growth index of DGP model and current growth rate data, Phys. Lett. B., 664, 1 (2008); Y.G. Gong, Growth factor parametrization and modified gravity, Phys. Rev. D, 78, 123010 (2008); X.-y Fu, P.-x Wu and H.-w, The growth of linear perturbations in the DGP model, Phys. Lett. B., 677, 12 (2009).
[26] Basilakos, S.; Stavrinos, P., Cosmological equivalence between the finsler-randers space-time and the DGP gravity model, Phys. Rev. D, 87, 043506, 2013
[27] S. Tsujikawa, R. Gannouji, B. Moraes and D. Polarski, Dispersion of growth of matter perturbations in f(R) gravity, Phys. Rev. D, 80, 084044 (2009).
[28] Alvarenga, F. G., Dynamics of scalar perturbations in f(r,t) gravity, Phys. Rev. D, 87, 103526, 2013
[29] Gannouji, R.; Moraes, B.; Polarski, D., The growth of matter perturbations in f(r) models, JCAP, 02, 034, 2009
[30] P. J. Uzan, The acceleration of the universe and the physics behind it, Gen. Rel. Grav., 39, 307 (2007); S. Tsujikawa, K. Uddin and R. Tavakol, Density perturbations in f(R) gravity theories in metric and Palatini formalisms, Phys. Rev. D, 77, 043007 (2008)
[31] Steigerwald, H.; Bel, J.; Marinoni, C., Probing non-standard gravity with the growth index: a background independent analysis, JCAP, 05, 042, 2014
[32] Hawkins, E., The 2df galaxy redshift survey: correlation functions, peculiar velocities and the matter density of the universe, Mon. Not. R. Astron. Soc., 346, 78, 2003
[33] Verde, L., The 2df galaxy redshift survey: the bias of galaxies and the density of the universe, Mon. Not. R. Astron. Soc., 335, 432, 2002
[34] Linder, E. V., Redshift distortions as a probe of gravity, Astropart. Phys., 29, 336, 2008
[35] Blake, C., The wigglez dark energy survey: the growth rate of cosmic structure since redshift z=0.9, Mon. Not. R. Astron. Soc., 415, 2876, 2011
[36] Reyes, R., Confirmation of general relativity on large scales from weak lensing and galaxy velocities, Nature, 464, 256, 2010
[37] Tegmark, M., (SDSS Collaboration): cosmological constraints from the SDSS luminous red galaxies, Phys. Rev. D, 74, 123507, 2006
[38] Ross, N. P., The 2df-SDSS LRG and QSO survey: the LRG 2-point correlation function and redshift-space distortions, Mon. Not. R. Astron. Soc., 381, 573, 2007
[39] Guzzo, L., A test of the nature of cosmic acceleration using galaxy redshift distortions, Nature, 451, 541, 2008
[40] de la Torre, S., The VIMOS public extragalactic redshift survey (VIPERS)-gravity test from the combination of redshift-space distortions and galaxy-galaxy lensing at 0.5 < z < 1.2, A&A, 608, A44, 2017
[41] Pezzotta, A., The VIMOS public extragalactic redshift survey (VIPERS): the growth of structure at 0.5 < z < 1.2 from redshift-space distortions in the clustering of the PDR-2 final sample, A&A, 604, A33, 2017
[42] Angela, J. D., The 2df-SDSS LRG and QSO survey: QSO clustering and the l-z degeneracy, Mon. Not. R. Astron. Soc., 383, 565, 2008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.