×

An efficient technique for solving the space-time fractional reaction-diffusion equation in porous media. (English) Zbl 07848617

Summary: In this paper, we obtained the approximate numerical solution of space-time fractional-order reaction-diffusion equation using an efficient technique homotopy perturbation technique using Laplace transform method with fractional-order derivatives in Caputo sense. The solution obtained is very useful and significant to analyze the many physical phenomenons. The present technique demonstrates the coupling of the homotopy perturbation technique and Laplace transform using He’s polynomials for finding the numerical solution of various non-linear fractional complex models. The salient features of the present work are the graphical presentations of the approximate solution of the considered porous media equation for different particular cases and reflecting the presence of reaction terms presented in the equation on the physical behavior of the solute profile for various particular cases.

MSC:

35Rxx Miscellaneous topics in partial differential equations
26Axx Functions of one variable
34Axx General theory for ordinary differential equations
Full Text: DOI

References:

[1] Zubair, S.; Chaudhary, N. I.; Khan, Z. A.; Wang, W., Momentum fractional LMS for power signal parameter estimation, Signal Process., 142, 441-449, 2018
[2] Ahlgren, A.; Wirestam, R.; Ståhlberg, F.; Knutsson, L., Automatic brain segmentation using fractional signal modeling of a multiple flip angle, spoiled gradient-recalled echo acquisition, Magn. Reson. Mater. Phys., Biol. Med., 27, 6, 551-565, 2014
[3] Sun, H.; Li, Z.; Zhang, Y.; Chen, W., Fractional and fractal derivative models for transient anomalous diffusion: model comparison, Chaos Solitons Fractals, 102, 346-353, 2017
[4] Kumar, D.; Singh, J.; Kumar, S., A fractional model of Navier-Stokes equation arising in unsteady flow of a viscous fluid, J. Assoc. Arab Univ.Basic Appl. Sci., 17, 1, 14-19, 2015
[5] Han, J.; Migórski, S.; Zeng, H., Weak solvability of a fractional viscoelastic frictionless contact problem, Appl. Math. Comput., 303, 1-18, 2017 · Zbl 1411.74044
[6] Yang, X.-J.; Gao, F.; Machado, J. T.; Baleanu, D., A new fractional derivative involving the normalized sinc function without singular kernel, Eur. Phys. J. Spec. Top., 226, 16-18, 3567-3575, 2017
[7] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Preface, 2006.
[8] Podlubny, I., Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol. 198, 1998, Elsevier · Zbl 0922.45001
[9] Yang, X.-J., General Fractional Derivatives: Theory, Methods and Applications, 2019, CRC Press · Zbl 1417.26001
[10] Yang, X.-J.; Gao, F.; Ju, Y., General Fractional Derivatives with Applications in Viscoelasticity, 2020, Academic Press · Zbl 1446.26001
[11] Murio, D. A., Implicit finite difference approximation for time fractional diffusion equations, Comput. Math. Appl., 56, 4, 1138-1145, 2008 · Zbl 1155.65372
[12] Wang, H.; Wang, K.; Sircar, T., A direct O(N log2 N) finite difference method for fractional diffusion equations, J. Comput. Phys., 229, 21, 8095-8104, 2010 · Zbl 1198.65176
[13] Darania, P.; Ebadian, A., A method for the numerical solution of the integro-differential equations, Appl. Math. Comput., 188, 1, 657-668, 2007 · Zbl 1121.65127
[14] Ray, S. S.; Bera, R., Solution of an extraordinary differential equation by Adomian decomposition method, J. Appl. Math., 2004, 4, 331-338, 2004 · Zbl 1080.65069
[15] 369-369
[16] Pandey, P.; Kumar, S.; Das, S., Approximate analytical solution of coupled fractional order reaction-advection-diffusion equations, Eur. Phys. J. Plus, 134, 7, 364, 2019
[17] Yang, X.-J.; Gao, F.; Ju, Y.; Zhou, H.-W., Fundamental solutions of the general fractional-order diffusion equations, Math. Methods Appl. Sci., 41, 18, 9312-9320, 2018 · Zbl 1406.35480
[18] Liu, J.-G.; Yang, X.-J.; Feng, Y.-Y.; Zhang, H.-Y., On the generalized time fractional diffusion equation: symmetry analysis, conservation laws, optimal system and exact solutions, IJGMM, 17, 1, 2050013-2050028, 2020 · Zbl 07806157
[19] Jafari, H.; Yousefi, S.; Firoozjaee, M.; Momani, S.; Khalique, C. M., Application of Legendre wavelets for solving fractional differential equations, Comput. Math. Appl., 62, 3, 1038-1045, 2011 · Zbl 1228.65253
[20] Yuanlu, L., Solving a nonlinear fractional differential equation using Chebyshev wavelets, Commun. Nonlinear Sci. Numer. Simul., 15, 9, 2284-2292, 2010 · Zbl 1222.65087
[21] Kajani, M. T.; Vencheh, A. H.; Ghasemi, M., The Chebyshev wavelets operational matrix of integration and product operation matrix, Int. J. Comput. Math., 86, 7, 1118-1125, 2009 · Zbl 1169.65072
[22] Sweilam, N.; Nagy, A.; El-Sayed, A. A., On the numerical solution of space fractional order diffusion equation via shifted Chebyshev polynomials of the third kind, J. King Saud Univ.-Sci., 28, 1, 41-47, 2016
[23] Yang, X.-J.; Tenreiro Machado, J., A new fractal nonlinear burgers’ equation arising in the acoustic signals propagation, Math. Methods Appl. Sci., 42, 18, 7539-7544, 2019 · Zbl 1435.35412
[24] Yang, X.-J.; Machado, J.; Nieto, J. J., A new family of the local fractional PDEs, Fundam. Inform., 151, 1-4, 63-75, 2017 · Zbl 1386.35461
[25] Yang, X.-J., New general fractional-order rheological models with kernels of Mittag-Leffler functions, Rom. Rep. Phys, 69, 4, 118, 2017
[26] Yang, X.-J.; Gao, F.; Srivastava, H., Non-differentiable exact solutions for the nonlinear odes defined on fractal sets, Fractals, 25, 04, 1740002, 2017
[27] Luchko, Y., Maximum principle for the generalized time-fractional diffusion equation, J. Math. Anal. Appl., 351, 1, 218-223, 2009 · Zbl 1172.35341
[28] Thangarajan, M., Groundwater models and their role in assessment and management of groundwater resources and pollution, Groundwater, 189-236, 2007, Springer
[29] Gómez-Aguilar, J.; Miranda-Hernández, M.; López-López, M.; Alvarado-Martínez, V.; Baleanu, D., Modeling and simulation of the fractional space-time diffusion equation, Commun. Nonlinear Sci. Numer. Simul., 30, 1-3, 115-127, 2016 · Zbl 1489.78003
[30] Bear, J.; Verruijt, A., Modeling groundwater flow and pollution, vol. 2, 2012, Springer Science & Business Media
[31] Fried, J., Groundwater pollution mathematical modelling: improvement or stagnation?, Studies in Environmental Science, vol. 17, 807-822, 1981, Elsevier
[32] Rida, S.; Arafa, A.; Abedl-Rady, A.; Abdl-Rahaim, H., Fractional physical differential equations via natural transform, Chin. J. Phys., 55, 4, 1569-1575, 2017 · Zbl 1539.34007
[33] Chen, S.; Liu, Y.; Wei, L.; Guan, B., Exact solutions to fractional Drinfeld-Sokolov-Wilson equations, Chin. J. Phys., 56, 2, 708-720, 2018 · Zbl 1533.35296
[34] Odabasi, M., Traveling wave solutions of conformable time-fractional Zakharov-Kuznetsov and Zoomeron equations, Chin. J. Phys., 64, 194-202, 2020 · Zbl 07830262
[35] Senol, M.; Tasbozan, O.; Kurt, A., Numerical solutions of fractional burgers type equations with conformable derivative, Chin. J. Phys., 58, 75-84, 2019 · Zbl 07822234
[36] Ghorbani, A., Beyond Adomian polynomials: he polynomials, Chaos Solitons Fractals, 39, 3, 1486-1492, 2009 · Zbl 1197.65061
[37] Ghorbani, A.; Saberi-Nadjafi, J., He’s homotopy perturbation method for calculating Adomian polynomials, Int. J. Nonlinear Sci.Numer. Simul., 8, 2, 229-232, 2007 · Zbl 1401.65056
[38] Ganji, D.; Sadighi, A., Application of He’s homotopy-Perturbation method to nonlinear coupled systems of reaction-diffusion equations, Int. J. Nonlinear Sci.Numer. Simul., 7, 4, 411-418, 2006
[39] Cveticanin, L., Homotopy-perturbation method for pure nonlinear differential equation, Chaos Solitons Fractals, 30, 5, 1221-1230, 2006 · Zbl 1142.65418
[40] Fu, Z.-J.; Chen, W.; Yang, H.-T., Boundary particle method for laplace transformed time fractional diffusion equations, J. Comput. Phys., 235, 52-66, 2013 · Zbl 1291.76256
[41] He, J.-H., Homotopy perturbation method: a new nonlinear analytical technique, Appl. Math. Comput., 135, 1, 73-79, 2003 · Zbl 1030.34013
[42] Goswami, A.; Singh, J.; Kumar, D.; Gupta, S., An efficient analytical technique for fractional partial differential equations occurring in ion acoustic waves in plasma, J. Ocean Eng. Sci., 2019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.