×

Analytical results for a non-Markovian process of gene expression with positive and negative feedbacks. (English) Zbl 07848581

Summary: Gene expression is a very complex process and involves many small biochemical reaction steps, resulting in a non-Markovian discrete stochastic process due to molecular memory between individual reactions. At present, this process is successfully investigated by generalized chemical master equation models. However, these models do not consider the role of feedback networks in gene expression. How the interaction between feedbacks and molecular memory affects gene expression still remains not well understood. Here, we establish generalized chemical master equation models of gene expression with positive and negative feedbacks. Assuming that the process of producing proteins follows an Erlang probability distribution, we obtain the analytical expression for this model in a steady state, as well as the measure of the noise of protein numbers. We further find that molecular memory competes with the positive feedback in suppressing the noise of the protein number. For our model with a negative feedback, molecular memory can strengthen the intensity of suppressing this noise. These interesting results imply that molecular memory are as important as the feedbacks to affect gene expression.

MSC:

92Cxx Physiological, cellular and medical topics
92Dxx Genetics and population dynamics
60Hxx Stochastic analysis
Full Text: DOI

References:

[1] Qiu, H.; Zhang, B.; Zhou, T., Analytical results for a generalized model of bursty gene expression with molecular memory, Phys. Rev. E, 100, 012128, 2019
[2] Wang, L. Y.; Yin, G. G.; Zhang, M. Q.; Jia, C., Single-cell stochastic gene expression kinetics with coupled positive-plus-negative feedback, Phys. Rev. E, 100, 052406, 2019
[3] Paulsson, J., Models of stochastic gene expression, Phys. Life Rev., 2, 157-175, 2005
[4] Lev, S. T., Noise in biology, Rep. Prog. Phys., 77, 026601, 2014
[5] Munsky, B.; Neuert, G.; Van, O. A., Using gene expression noise to understand gene regulation, Science, 336, 183-187, 2012 · Zbl 1355.92069
[6] Elowitz, M. B.; Levine, A. J.; Siggia, E. D.; Swain, P. S., Stochastic gene expression in a single cell, Science, 297, 1183-1186, 2002
[7] Jones, D. L.; Brewster, R. C.; Phillips, R., Promoter architecture dictates cell-to-cell variability in gene expression, Science, 346, 1533-1536, 2014
[8] Hung, Y.-C.; Hu, C. K., Constructive role of noise in p53 regulatory network, Comput. Phys. Commun., 182, 249-250, 2011 · Zbl 1216.92038
[9] Petrosyan, K.; Hu, C. K., Fluctuation effects in gene regulation by microRNAs and correlations between gene and pseudogene mRNAs in the control of cancer, J. Stat. Mech, P07019, 2015 · Zbl 1456.92061
[10] Eldar, A.; Elowitz, M. B., Functional roles for noise in genetic circuits, Nature, 467, 167-173, 2010
[11] Raj, A.; Rifkin, S. A.; Andersen, E.; van Oudenaarden, A., Variability in gene expression underlies incomplete penetrance, Nature, 463, 913-918, 2010
[12] Raser O., J. M.; Shea, E. K., Control of stochasticity in eukaryotic gene expression, Science, 304, 1811, 2004
[13] Boettiger, A. N., Analytic approaches to stochastic gene expression in multicellular systems, Biophys. J., 105, 2629-2640, 2013
[14] Dessalles, R.; Fromion, V.; Robert, P., A stochastic analysis of autoregulation of gene expression, J. Math. Biol., 75, 1253-1283, 2017 · Zbl 1373.92040
[15] Zheng, L.; Chen, M.; Nie, Q., External noise control in inherently stochastic biological systems, J. Math. Phys., 53, 115616, 2012 · Zbl 1279.92011
[16] Mackey, M. C.; Tyran-Kamiska, M.; Yvinec, R., Molecular distributions in gene regulatory dynamics, J. Theor. Biol., 274, 84-96, 2011 · Zbl 1331.92046
[17] Moody, A. D.; Batchelor, E., Promoter decoding of transcription factor dynamics, Mol. Syst. Biol., 9, 703, 2013
[18] Shi, C.; Wang, S.; Ruan, H., Effect of post-transcriptional feedback on the stochastic effect in gene expression, Chin. J. Phys., 55, 2491-2500, 2017 · Zbl 07815543
[19] Lai, Q., Stability and bifurcation of delayed bidirectional gene regulatory networks with negative feedback loops, Chin. J. Phys., 56, 1064-1073, 2018 · Zbl 07819493
[20] Huang, G. R.; Saakian, D. B.; Hu, C. K., Accurate analytic solution of chemical master equations for gene regulation networks in a single cell, Phys. Rev. E, 97, 012412, 2018
[21] Delbrück, M., Statistical fluctuations in autocatalytic reactions, J. Chem. Phys., 8, 120-124, 1940
[22] Higham, D., Modeling and simulating chemical reactions, SIAM Rev., 50, 347-368, 2008 · Zbl 1144.80011
[23] Gross, D., Fundamentals of Queueing Theory, 2008, John Wiley & Sons · Zbl 1151.60001
[24] Giaretta, A.; Toffolo, G. M.; Elston, T. C., Stochastic modeling of human papillomavirusearly promoter gene regulation, J. Theor. Biol., 486, 110057, 2020 · Zbl 1429.92105
[25] Marc, S., Stochastic reactioncdiffusion algorithms for macromolecular crowding, Phys. Biol., 13, 036010, 2016
[26] Tschirhart, H.; Platini, T., Analytical results for a stochastic model of gene expression with arbitrary partitioning of proteins, J. Phys. A, 51, 195601, 2018 · Zbl 1395.92117
[27] Jedrak, J.; Kwiatkowski, M.; Ochabmarcinek, A., Exactly solvable model of gene expression in a proliferating bacterial cell population with stochastic protein bursts and protein partitioning, Phys. Rev. E, 99, 042416, 2019
[28] Dattani, J.; Barahona, M., Stochastic models of gene transcription with upstream drives: exact solution and sample path characterization, J. R. Soc. Interf., 14, 20160833, 2017
[29] Cramer, P., Organization and regulation of gene transcription, Nature, 573, 45-54, 2019
[30] Shis, D. L.; Bennett, M. R.; Igoshin, O. A., Dynamics of bacterial gene regulatory networks, Annu. Rev. Biophys., 47, 447-467, 2018
[31] Kim, T.-K.; Shiekhattar, R., Architectural and functional commonalities between enhancers and promoters, Cell, 162, 948-959, 2015
[32] Zhang, J.; Zhou, T., Markovian approaches to modeling intracellular reaction processes with molecular memory, Proc. Natl. Acad. Sci., 201913926, 2019
[33] Davidson, E. H., Emerging properties of animal gene regulatory networks, Nature, 468, 911-920, 2010
[34] Eldar, A.; Elowitz, M. B., Functional roles for noise in genetic circuits, Nature, 467, 167-173, 2010
[35] Losick, R.; Desplan, C., Stochasticity and cell fate, Science, 320, 65-68, 2008
[36] Suter, D. M.; Molina, N.; Gatfield, D.; Schneider, K.; Schibler, U.; Naef, F., Mammalian genes are transcribed with widely different bursting kinetics, Science, 332, 472-474, 2011
[37] Harper, C. V.; Finkenstädt, B.; Woodcock, D. J.; Friedrichsen, S.; Semprini, S.; Ashall, L.; Spiller, D. G.; Mullins, J. J.; Rand, D. A.; Davis, J. R.E.; White, M. R.H., Dynamic analysis of stochastic transcription cycles, PLoS Biol., 9, e1000607, 2011
[38] Weinberger, L. S.; Burnett, J. C.; Toettcher, J. E.; Arkin, A. P.; Schaffer, D. V., Stochastic gene expression in a lentiviral positive-feedback loop: Hiv-1 tat fluctuations drive phenotypic diversity, Cell, 122, 169-182, 2005
[39] Kumar, N.; Platini, T.; Kulkarni, R. V., Exact distributions for stochastic gene expression models with bursting and feedback, Phys. Rev. Lett., 113, 268105, 2014
[40] Dentz, M.; Aquino, T., Chemical continuous time random walks, Phys. Rev. Lett., 119, 230601, 2017
[41] Galla, T.; Brett, T., Stochastic processes with distributed delays: chemical langevin equation and linear-noise approximation, Phys. Rev. Lett., 110, 250601, 2013
[42] Yates, C. A.; Ford, M. J.; Mort, R. L., A multi-stage representation of cell proliferation as a markov process, Bull. Math. Biol., 79, 2905-2928, 2017 · Zbl 1380.92017
[43] Assaf, M.; Roberts, E.; Luthey-Schulten, Z., Determining the stability of genetic switches: explicitly accounting for mrna noise, Phys. Rev. Lett., 106, 24810224, 2011
[44] Klages, R.; Radons, G.; Sokolov, I. M., Anomalous Transport: Foundations and Applications, 2008, Wiley-VCH: Wiley-VCH Weinheim
[45] Hermsen, R.; David, E., Speed, sensitivity, and bistability in auto-activating signaling circuits, PLoS Comput. Biol., 7, e1002265, 2011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.