×

3D generating surfaces in Hamiltonian systems with three degrees of freedom. I. (English) Zbl 07848306


MSC:

37M21 Computational methods for invariant manifolds of dynamical systems
37D10 Invariant manifold theory for dynamical systems
37J46 Periodic, homoclinic and heteroclinic orbits of finite-dimensional Hamiltonian systems
Full Text: DOI

References:

[1] Ezra, G. S. & Wiggins, S. [2018] “ Sampling phase space dividing surfaces constructed from Normally Hyperbolic Invariant Manifolds (NHIMs),” J. Phys. Chem. A122, 8354-8362.
[2] Geng, Y., Katsanikas, M., Agaoglou, M. & Wiggins, S. [2021] “ The bifurcations of the critical points and the role of the depth in a symmetric Caldera potential energy surface,” Int. J. Bifurcation and Chaos31, 2130034-1-11. · Zbl 1481.37056
[3] Katsanikas, M. & Wiggins, S. [2018] “ Phase space structure and transport in a Caldera potential energy surface,” Int. J. Bifurcation and Chaos28, 1830042-1-20. · Zbl 1405.37071
[4] Katsanikas, M. & Wiggins, S. [2019] “ Phase space analysis of the nonexistence of dynamical matching in a stretched Caldera potential energy surface,” Int. J. Bifurcation and Chaos29, 1950057-1-9. · Zbl 1412.34159
[5] Katsanikas, M., García-Garrido, V. J. & Wiggins, S. [2020] “ Detection of dynamical matching in a Caldera Hamiltonian system using Lagrangian descriptors,” Int. J. Bifurcation and Chaos30, 2030026-1-16. · Zbl 1460.37076
[6] Katsanikas, M. & Wiggins, S. [2021a] “ The generalization of the periodic orbit dividing surface in Hamiltonian systems with three or more degrees of freedom - I,” Int. J. Bifurcation and Chaos31, 2130028-1-20. · Zbl 1479.37085
[7] Katsanikas, M. & Wiggins, S. [2021b] “ The generalization of the periodic orbit dividing surface for Hamiltonian systems with three or more degrees of freedom - II,” Int. J. Bifurcation and Chaos31, 2150188-1-10. · Zbl 1481.37070
[8] Katsanikas, M. & Wiggins, S. [2022] “ The nature of reactive and non-reactive trajectories for a three dimensional Caldera potential energy surface,” Physica D435, 133293. · Zbl 1498.37101
[9] Katsanikas, M., Agaoglou, M. & Wiggins, S. [2022a] “ Bifurcation of dividing surfaces constructed from period-doubling bifurcations of periodic orbits in a Caldera potential energy surface,” Int. J. Bifurcation and Chaos32, 2230015-1-18. · Zbl 1502.37060
[10] Katsanikas, M., Agaoglou, M., Wiggins, S. & Mancho, A. M. [2022b] “ Phase space transport in a symmetric Caldera potential with three index-1 saddles and no minima,” Int. J. Bifurcation and Chaos32, 2230023-1-9. · Zbl 1506.37100
[11] Katsanikas, M., Hillebrand, M., Skokos, C. & Wiggins, S. [2022c] “ The influence of asymmetry on the dynamics associated with a Caldera potential energy surface,” Int. J. Bifurcation and Chaos32, 2230039-1-11. · Zbl 1498.37128
[12] Katsanikas, M. & Wiggins, S. [2024] “ 2D generating surfaces and dividing surfaces in Hamiltonian systems with three degrees of freedom,” Int. J. Bifurcation and Chaos34, 2430002-1-13. · Zbl 07848368
[13] Katsanikas, M. & Wiggins, S. [2023b] “ The generalization of the periodic orbit dividing surface for Hamiltonian systems with three or more degrees of freedom - III,” Int. J. Bifurcation and Chaos33, 2350088. · Zbl 07847372
[14] Katsanikas, M. & Wiggins, S. [2023c] “ The generalization of the periodic orbit dividing surface for Hamiltonian systems with three or more degrees of freedom - IV,” Int. J. Bifurcation and Chaos33, 2330020-1-10. · Zbl 07847374
[15] Komatsuzaki, T. & Berry, R. S. [2003] “ Chemical reaction dynamics: Many-body chaos and regularity,” Adv. Chem. Phys.123, 79-152.
[16] Moser, J. [1976] “ Periodic orbits near an equilibrium and a theorem by Alan Weinstein,” Commun. Pure Appl. Math.29, 727-747. · Zbl 0346.34024
[17] Pechukas, P. & McLafferty, F. J. [1973] “ On transition-state theory and the classical mechanics of collinear collisions,” J. Chem. Phys.58, 1622-1625.
[18] Pechukas, P. & Pollak, E. [1977] “ Trapped trajectories at the boundary of reactivity bands in molecular collisions,” J. Chem. Phys.67, 5976-5977.
[19] Pechukas, P. [1981] “ Transition state theory,” Annu. Rev. Phys. Chem.32, 159-177.
[20] Pollak, E. & Pechukas, P. [1978] “ Transition states, trapped trajectories, and classical bound states embedded in the continuum,” J. Chem. Phys.69, 1218-1226.
[21] Pollak, E. [1985] “ Periodic orbits and the theory of reactive scattering,” Theory Chem. React. Dyn.3, 123.
[22] Rabinowitz, P. [1982] “ Periodic solutions of Hamiltonian systems: A survey,” SIAM J. Math. Anal.13, 343-352. · Zbl 0521.58028
[23] Toda, M. [2003] “ Dynamics of chemical reactions and chaos,” Adv. Chem. Phys.123, 153-198.
[24] Uzer, T., Jaffé, C., Palacián, J., Yanguas, P. & Wiggins, S. [2002] “ The geometry of reaction dynamics,” Nonlinearity15, 957. · Zbl 1055.37063
[25] Waalkens, H., Schubert, R. & Wiggins, S. [2007] “ Wigner’s dynamical transition state theory in phase space: Classical and quantum,” Nonlinearity21, R1. · Zbl 1153.81017
[26] Weinstein, A. [1973] “ Normal modes for nonlinear Hamiltonian systems,” Invent. Math.20, 47-57. · Zbl 0264.70020
[27] Wiggins, S., Wiesenfeld, L., Jaffé, C. & Uzer, T. [2001] “ Impenetrable barriers in phase-space,” Phys. Rev. Lett.86, 5478.
[28] Wiggins, S. [2016] “ The role of Normally Hyperbolic Invariant Manifolds (NHIMs) in the context of the phase space setting for chemical reaction dynamics,” Regul. Chaotic Dyn.21, 621-638. · Zbl 1369.34068
[29] Wiggins, S. & Katsanikas, M. [2023] “ Dynamical matching in a three-dimensional Caldera potential-energy surface,” Phys. Rev. E108, 014206. · Zbl 1498.37101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.