×

A high order numerical method for the variable order time-fractional reaction-subdiffusion equation. (English) Zbl 07846792

Summary: In this paper, we present a high order new numerical approximation for variable order Caputo fractional derivative of order \(0 < \alpha(\mathrm{x}, t) < 1\), by using the idea of interpolation. Then, by using this approximation, a numerical scheme is presented by using finite difference approach for variable order time fractional reaction-subdiffusion equation (VO-TFRSDE). The unconditionally stability of the numerical scheme is examined theoretically. The scheme is implemented on the two test problems. The numerical results are highly accurate with higher order of convergence.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
26Axx Functions of one variable
35Kxx Parabolic equations and parabolic systems
Full Text: DOI

References:

[1] Benson, D. A.; Wheatcraft, S. W.; Meerschaert, M. M., The fractional-order governing equation of Lévy motion, Water Resour. Res., 36, 6, 1413-1423, 2000
[2] Chaves, A., A fractional diffusion equation to describe Lévy flights, Phys. Lett. A, 239, 1-2, 13-16, 1998 · Zbl 1026.82524
[3] Raberto, M.; Scalas, E.; Mainardi, F., Waiting-times and returns in high-frequency financial data: an empirical study, Physica A, 314, 1-4, 749-755, 2002 · Zbl 1001.91033
[4] Srivastava, N.; Singh, A.; Singh, V. K., Computational algorithm for financial mathematical model based on European option, Math. Sci., 1-24, 2022
[5] Meerschaert, M. M.; Sikorskii, A., Stochastic Models for Fractional Calculus, 2012, De Gruyter · Zbl 1247.60003
[6] Liu, F.; Anh, V.; Turner, I., Numerical solution of the space fractional Fokker-Planck equation, J. Comput. Appl. Math., 166, 1, 209-219, 2004 · Zbl 1036.82019
[7] Schumer, R.; Benson, D. A.; Meerschaert, M. M.; Wheatcraft, S. W., Eulerian derivation of the fractional advection-dispersion equation, J. Contam. Hydrol., 48, 1-2, 69-88, 2001
[8] Li, C.; Zeng, F., Numerical Methods for Fractional Calculus, 2015, Chapman and Hall/CRC · Zbl 1326.65033
[9] Tarasov, V. E., Partial fractional derivatives of Riesz type and nonlinear fractional differential equations, Nonlinear Dynam., 86, 3, 1745-1759, 2016 · Zbl 1372.34022
[10] Dabiri, A.; Moghaddam, B. P.; Machado, J. T., Optimal variable-order fractional PID controllers for dynamical systems, J. Comput. Appl. Math., 339, 40-48, 2018 · Zbl 1392.49033
[11] Baleanu, D.; Machado, J. A.T.; Luo, A. C., Fractional dynamics and control, 2011, Springer Science & Business Media
[12] Baleanu, D.; Güvenç, Z. B.; Machado, J. T., New Trends in Nanotechnology and Fractional Calculus Applications, Vol. 10, 2010, Springer · Zbl 1196.65021
[13] Podlubny, I., Fractional Differential Equations, Mathematics in Science and Engineering, 1999, Academic press New York · Zbl 0924.34008
[14] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations, Vol. 204, 2006, Elsevier · Zbl 1092.45003
[15] Kai, D., The analysis of fractional differential equations. An application-oriented exposition using differential operators of Caputo type, Lecture Notes in Math., 2004
[16] Srivastava, N.; Singh, V. K., L3 approximation of Caputo derivative and its application to time-fractional wave equation-(I), Math. Comput. Simulation, 205, 532-557, 2023 · Zbl 1540.65332
[17] Samko, S. G.; Ross, B., Integration and differentiation to a variable fractional order, Integral Transforms Spec. Funct., 1, 4, 277-300, 1993 · Zbl 0820.26003
[18] Lorenzo, C. F.; Hartley, T. T., Variable order and distributed order fractional operators, Nonlinear Dynam., 29, 1, 57-98, 2002 · Zbl 1018.93007
[19] Lorenzo, C. F.; Hartley, T. T., Initialization, conceptualization, and application in the generalized (fractional) calculus, Crit. Rev. Biomed. Eng., 35, 6, 2007
[20] Kosztołowicz, T.; Dutkiewicz, A., Composite subdiffusion equation that describes transient subdiffusion, Phys. Rev. E, 106, 4, Article 044119 pp., 2022
[21] Chechkin, A. V.; Gorenflo, R.; Sokolov, I. M., Fractional diffusion in inhomogeneous media, J. Phys. A: Math. Gen., 38, 42, L679, 2005 · Zbl 1082.76097
[22] Hajipour, M.; Jajarmi, A.; Baleanu, D.; Sun, H., On an accurate discretization of a variable-order fractional reaction-diffusion equation, Commun. Nonlinear Sci. Numer. Simul., 69, 119-133, 2019 · Zbl 1509.65071
[23] Chen, C.-M.; Liu, F.; Turner, I.; Anh, V.; Chen, Y., Numerical approximation for a variable-order nonlinear reaction-subdiffusion equation, Numer. Algorithms, 63, 265-290, 2013 · Zbl 1278.65121
[24] Kheirkhah, F.; Hajipour, M.; Baleanu, D., The performance of a numerical scheme on the variable-order time-fractional advection-reaction-subdiffusion equations, Appl. Numer. Math., 178, 25-40, 2022 · Zbl 07533815
[25] Sun, H.; Chen, W.; Wei, H.; Chen, Y., A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems, Eur. Phys. J. Spec. Top., 193, 1, 185-192, 2011
[26] Shyu, J.-J.; Pei, S.-C.; Chan, C.-H., An iterative method for the design of variable fractional-order FIR differintegrators, Signal Process., 89, 3, 320-327, 2009 · Zbl 1151.94410
[27] Coimbra, C. F., Mechanics with variable-order differential operators, Ann. Phys., 12, 11-12, 692-703, 2003 · Zbl 1103.26301
[28] Evans, K. P.; Jacob, N., Feller semigroups obtained by variable order subordination, Revista Mat. Compul., 20, 2, 293-307, 2007 · Zbl 1153.47033
[29] Jacob, N.; Leopold, H.-G., Pseudo differential operators with variable order of differentiation generating Feller semigroups, Integral Equations Operator Theory, 17, 4, 544-553, 1993 · Zbl 0793.35139
[30] Kikuchi, K.; Negoro, A., On Markov process generated by pseudodifferential operator of variable order, Osaka J. Math., 34, 2, 319-335, 1997 · Zbl 0913.60062
[31] Leopold, H.-G., Embedding of function spaces of variable order of differentiation in function spaces of variable order of integration, Czechoslovak Math. J., 49, 3, 633-644, 1999, http://hdl.handle.net/10338.dmlcz/127515 · Zbl 1008.46015
[32] Chen, C.-M.; Liu, F.; Anh, V.; Turner, I., Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation, SIAM J. Sci. Comput., 32, 4, 1740-1760, 2010 · Zbl 1217.26011
[33] Chen, C.-M.; Liu, F.; Anh, V.; Turner, I., Numerical simulation for the variable-order Galilei invariant advection diffusion equation with a nonlinear source term, Appl. Math. Comput., 217, 12, 5729-5742, 2011 · Zbl 1227.65072
[34] Lin, R.; Liu, F.; Anh, V.; Turner, I., Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation, Appl. Math. Comput., 212, 2, 435-445, 2009 · Zbl 1171.65101
[35] Sweilam, N.; Adel, M.; Saadallah, A.; Soliman, T., Numerical studies for variable order linear and nonlinear fractional cable equation, J. Comput. Theor. Nanosci., 12, 12, 5535-5542, 2015
[36] Zhuang, P.; Liu, F.; Anh, V.; Turner, I., Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term, SIAM J. Numer. Anal., 47, 3, 1760-1781, 2009 · Zbl 1204.26013
[37] Adel, M., Finite difference approach for variable order reaction-subdiffusion equations, Adv. Difference Equ., 406, 1-12, 2018 · Zbl 1448.65199
[38] Yang, Q.; Moroney, T.; Liu, F.; Turner, I., Computationally efficient methods for solving time-variable-order time-space fractional reaction-diffusion equation, (Proceedings of the 5th IFAC Symposium on Fractional Differentiation and Its Applications, 2012, Hohai University), 1-6
[39] Hafez, R.; Youssri, Y., Jacobi collocation scheme for variable-order fractional reaction-subdiffusion equation, Comput. Appl. Math., 37, 4, 5315-5333, 2018 · Zbl 1404.65195
[40] Yang, X.; Zhang, H.; Xu, D., WSGD-OSC scheme for two-dimensional distributed order fractional reaction-diffusion equation, J. Sci. Comput., 76, 3, 1502-1520, 2018 · Zbl 1397.65210
[41] Adel, M.; Elsaid, M., An efficient approach for solving fractional variable order reaction sub-diffusion based on Hermite formula, Fractals, 30, 01, Article 2240020 pp., 2022 · Zbl 07490656
[42] Mokhtari, R.; Mostajeran, F., A high order formula to approximate the Caputo fractional derivative, Commun. Appl. Math. Comput. Sci., 2, 1, 1-29, 2020 · Zbl 1449.65195
[43] Gao, G.-H.; Sun, Z.-Z.; Zhang, H.-W., A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, J. Comput. Phys., 259, 33-50, 2014 · Zbl 1349.65088
[44] Sayyar, G.; Hosseini, S. M.; Mostajeran, F., A high-order scheme for time-space fractional diffusion equations with Caputo-Riesz derivatives, Comput. Math. Appl., 104, 34-43, 2021 · Zbl 1524.65392
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.