×

Henselian expansions of NIP fields. (English) Zbl 07845700

Summary: Let \(K\) be an NIP field and let \(v\) be a Henselian valuation on \(K\). We ask whether \((K,v)\) is NIP as a valued field. By a result of Shelah, we know that if \(v\) is externally definable, then \((K,v)\) is NIP. Using the definability of the canonical \(p\)-Henselian valuation, we show that whenever the residue field of \(v\) is not separably closed, then \(v\) is externally definable. In the case of separably closed residue field, we show that \((K,v)\) is NIP as a pure valued field.

MSC:

12L12 Model theory of fields
03C45 Classification theory, stability, and related concepts in model theory
12J10 Valued fields
Full Text: DOI

References:

[1] S. Anscombe and F. Jahnke, Characterizing NIP henselian fields, preprint (2022) arXiv:1911.00309.
[2] Anscombe, S. and Jahnke, F., The model theory of Cohen rings, Confluentes Math.14(2) (2022) 1-28. · Zbl 07669829
[3] Anscombe, S. and Kuhlmann, F.-V., Notes on extremal and tame valued fields, J. Symbolic Logic81(2) (2016) 400-416. · Zbl 1436.03193
[4] Bélair, L., Types dans les corps valués munis d’applications coefficients, Illinois J. Math.3(2) (1999) 410-425. · Zbl 0927.03067
[5] Delon, F., Types sur \(C((X))\), in Study Group on Stable Theories (Bruno Poizat), Second year: 1978/1979 (French), Vol. 5 (Paris, 1981), 29.
[6] Engler, A. J. and Prestel, A., Valued Fields, (Springer-Verlag, Berlin, 2005). · Zbl 1128.12009
[7] Halevi, Y., Hasson, A. and Jahnke, F., Definable V-topologies, henselianity and NIP, J. Math. Log.20(2) (2020) 2050008. · Zbl 1472.03035
[8] Jahnke, F. and Koenigsmann, J., Definable Henselian valuations, J. Symbolic Logic80(1) (2015) 85-99. · Zbl 1372.03078
[9] Jahnke, F. and Koenigsmann, J., Uniformly defining p-Henselian valuations, Ann. Pure Appl. Logic166(7-8) (2015) 741-754. · Zbl 1372.03077
[10] Johnson, W., The canonical topology on dp-minimal fields, J. Math. Logic18(2) (2018) 1850007. · Zbl 1522.03115
[11] W. Johnson, Dp-finite fields VI: the dp-finite Shelah conjecture, preprint (2020) arXiv:2005.13989.
[12] Johnson, W., Dp-finite fields I(B): Positive characteristic, Ann. Pure Appl. Logic172(6) (2021) 102949. · Zbl 1477.03136
[13] Johnson, W., Forking and dividing in fields with several orderings and valuations, J. Math. Logic22(1) (2022) 2150025. · Zbl 1506.03086
[14] Jahnke, F. and Simon, P., NIP Henselian valued fields, Arch. Math. Logic59(1-2) (2020) 167-178. · Zbl 1444.03130
[15] Koenigsmann, J., p-Henselian fields, Manuscripta Math.87(1) (1995) 89-99. · Zbl 0828.12006
[16] Kaplan, I., Scanlon, T. and Wagner, F. O., Artin-Schreier extensions in NIP and simple fields, Israel J. Math.185 (2011) 141-153. · Zbl 1261.03120
[17] Kuhlmann, F.-V., The defect, in Commutative Algebra — Noetherian and non-Noetherian Perspectives (Springer, New York, 2011), pp. 277-318. · Zbl 1227.12006
[18] Kuhlmann, F.-V., The algebra and model theory of tame valued fields, J. Reine Angew. Math.719 (2016) 1-43. · Zbl 1401.13011
[19] Simon, P., A Guide to NIP Theories, , Vol. 44, Association for Symbolic Logic, La Jolla, CA (Cambridge University Press, Cambridge, 2015). · Zbl 1332.03001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.