×

Element-free Galerkin method for a fractional-order boundary value problem. (English) Zbl 07845205

Summary: In this article, we develop a meshfree numerical solver for fractional-order governing differential equations. More specifically, we develop a mesh-free interpolation-based element-free Galerkin numerical model for the fractional-order governing differential equations. The proposed fractional element-free Garlekin (f-EFG) numerical model is a lighter and more accurate alternative to existing mesh-based finite element solvers for the fractional-order governing differential equations. We demonstrate here that the f-EFG with moving least squares (MLS) interpolants are naturally suitable for the approximation of fractional-order derivatives in terms of the corresponding nodal values, thereby alleviating several issues with FE solvers for such integro-differential governing equations. We demonstrate the efficacy of the proposed numerical model for numerical solutions with benchmark problems on the linear and nonlinear elastic response of nonlocal elastic solid modeled via fractional-order governing differential equations. However, it must be noted that the proposed f-EFG algorithm can be extended to fractional-order governing differential equations in diverse applications, including multiscale and multiphysics studies.
© 2024 John Wiley & Sons Ltd.

MSC:

65Lxx Numerical methods for ordinary differential equations
74Sxx Numerical and other methods in solid mechanics
26Axx Functions of one variable
Full Text: DOI

References:

[1] OldhamK, SpanierJ. The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order. Elsevier; 1974. · Zbl 0292.26011
[2] SierociukD, DzielińskiA, SarwasG, PetrasI, PodlubnyI, SkovranekT. Modelling heat transfer in heterogeneous media using fractional calculus. Philos Trans R Soc A Math Phys Eng Sci. 2013;371:20120146. · Zbl 1382.80004
[3] DzielińskiA, SarwasG, SierociukD. Comparison and validation of integer and fractional order ultracapacitor models. Adv Differ Equ. 2011;2011:1‐15. · Zbl 1268.34091
[4] DzielińskiA, SierociukD, SarwasG. Some Applications of Fractional Order Calculus. Bulletin of the Polish Academy of Sciences: Technical Sciences; 2010.
[5] StiassnieM. On the application of fractional calculus for the formulation of viscoelastic models. Appl Math Model. 1979;3:300‐302. · Zbl 0419.73038
[6] BagleyRL, TorvikPJ. Fractional calculus‐a different approach to the analysis of viscoelastically damped structures. AIAA J. 1983;21:741‐748. · Zbl 0514.73048
[7] FalconerK. Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons; 2004.
[8] AxtellM, BiseME. Fractional calculus application in control systems. IEEE Conference on Aerospace and Electronics. IEEE; 1990:563‐566.
[9] Gómez‐AguilarJ, Yépez‐MartínezH, Escobar‐JiménezR, Astorga‐ZaragozaC, Reyes‐ReyesJ. Analytical and numerical solutions of electrical circuits described by fractional derivatives. Appl Math Model. 2016;40:9079‐9094. · Zbl 1480.94053
[10] OwolabiKM, AtanganaA. Numerical solution of fractional‐in‐space nonlinear Schrödinger equation with the riesz fractional derivative. Eur Phys J Plus. 2016;131:335.
[11] RossikhinYA, ShitikovaMV. Application of fractional calculus for dynamic problems of solid mechanics: Novel trends and recent results. Appl Mech Rev. 2010;63(1):010801.
[12] CaputoM. Vibrations of an infinite viscoelastic layer with a dissipative memory. J Acoust Soc Am. 1974;56:897‐904. · Zbl 0285.73031
[13] GalucioAC, DeüJ‐F, OhayonR. Finite element formulation of viscoelastic sandwich beams using fractional derivative operators. Comput Mech. 2004;33:282‐291. · Zbl 1067.74065
[14] SabzikarF, MeerschaertMM, ChenJ. Tempered fractional calculus. J Comput Phys. 2015;293:14‐28. · Zbl 1349.26017
[15] PoosehS, RodriguesHS, TorresDF. Fractional derivatives in dengue epidemics. AIP Conference Proceedings. Vol 1389. American Institute of Physics; 2011:739‐742.
[16] SumelkaW. Thermoelasticity in the framework of the fractional continuum mechanics. J Therm Stresses. 2014;37:678‐706.
[17] SumelkaW, BlaszczykT. Fractional continua for linear elasticity. Arch Mech. 2014;66:147‐172. · Zbl 1298.74026
[18] SumelkaW, BlaszczykT, LieboldC. Fractional Euler-Bernoulli beams: Theory, numerical study and experimental validation. Eur J Mech A/Solids. 2015;54:243‐251. · Zbl 1406.74408
[19] SumelkaW. On fractional non‐local bodies with variable length scale. Mech Res Commun. 2017;86:5‐10.
[20] SidhardhS, PatnaikS, SemperlottiF. Thermodynamics of fractional‐order nonlocal continua and its application to the thermoelastic response of beams. Eur J Mech A/Solids. 2021;88:104238. · Zbl 1481.74142
[21] AtanackovicTM, PilipovicS, StankovicB, ZoricaD. Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes. John Wiley & Sons; 2014. · Zbl 1291.74001
[22] LiC, ChenA, YeJ. Numerical approaches to fractional calculus and fractional ordinary differential equation. J Comput Phys. 2011;230:3352‐3368. · Zbl 1218.65070
[23] CortésF, ElejabarrietaMJ. Finite element formulations for transient dynamic analysis in structural systems with viscoelastic treatments containing fractional derivative models. Int J Numer Methods Eng. 2007;69:2173‐2195. · Zbl 1194.74380
[24] PatnaikS, SidhardhS, SemperlottiF. A ritz‐based finite element method for a fractional‐order boundary value problem of nonlocal elasticity. Int J Solids Struct. 2020;202:398‐417.
[25] SidhardhS, PatnaikS, SemperlottiF. Geometrically nonlinear response of a fractional‐order nonlocal model of elasticity. Int J Nonlinear Mech. 2020;125:103529.
[26] BuW, TangY, YangJ. Galerkin finite element method for two‐dimensional riesz space fractional diffusion equations. J Comput Phys. 2014;276:26‐38. · Zbl 1349.65441
[27] YangZ, YuanZ, NieY, WangJ, ZhuX, LiuF. Finite element method for nonlinear riesz space fractional diffusion equations on irregular domains. J Comput Phys. 2017;330:863‐883. · Zbl 1378.35330
[28] PatnaikS, HollkampJP, SidhardhS, SemperlottiF. Fractional order models for the homogenization and wave propagation analysis in periodic elastic beams. Meccanica. 2022;57:757‐773. · Zbl 1528.74091
[29] DingW, PatnaikS, SemperlottiF. Multiscale multimesh finite element method
[( {m}^2 \]\)‐fem: Hierarchical mesh‐decoupling for integral structural theories. arXiv preprint arXiv:2210.14772 2022.
[30] BelytschkoT, LuYY, GuL. Element‐free Galerkin methods. Int J Numer Methods Eng. 1994;37:229‐256. · Zbl 0796.73077
[31] LuY, BelytschkoT, GuL. A new implementation of the element free Galerkin method. Comput Methods Appl Mech Eng. 1994;113:397‐414. · Zbl 0847.73064
[32] KryslP, BelytschkoT. Analysis of thin plates by the element‐free Galerkin method. Comput Mech. 1995;17:26‐35. · Zbl 0841.73064
[33] BelytschkoT, LuY, GuL. Crack propagation by element‐free Galerkin methods. Eng Fract Mech. 1995;51:295‐315.
[34] BelytschkoT, TabbaraM. Dynamic fracture using element‐free Galerkin methods. Int J Numer Methods Eng. 1996;39:923‐938. · Zbl 0953.74077
[35] PanX, YuanH. Computational algorithms and applications of element‐free Galerkin methods for nonlocal damage models. Eng Fract Mech. 2010;77:2640‐2653.
[36] ZhangY, ZhangL, LiewK, YuJ. Nonlocal continuum model for large deformation analysis of SLGSS using the KP‐ritz element‐free method. Int J Nonlinear Mech. 2016;79:1‐9.
[37] BelytschkoT, OrganD, GerlachC. Element‐free Galerkin methods for dynamic fracture in concrete. Comput Methods Appl Mech Eng. 2000;187:385‐399. · Zbl 0962.74077
[38] PatnaikS, SidhardhS, SemperlottiF. Displacement‐driven approach to nonlocal elasticity. Eur J Mech A/Solids. 2022;92:104434. · Zbl 1506.74055
[39] LiuG‐R, GuY‐T. An Introduction to Meshfree Methods and their Programming. (Springer Science & Business Media; 2005.
[40] AtluriSN, ChoJ, KimH‐G. Analysis of thin beams, using the meshless local Petrov-Galerkin method, with generalized moving least squares interpolations. Comput Mech. 1999;24:334‐347. · Zbl 0968.74079
[41] TarasovVE. No violation of the Leibniz rule. no fractional derivative. Commun Nonlinear Sci Numer Simul. 2013;18:2945‐2948. · Zbl 1329.26015
[42] RalstonA, RabinowitzP. A First Course in Numerical Analysis. Courier Corporation; 2001. · Zbl 0976.65001
[43] HaleN, TownsendA. Fast and accurate computation of Gauss-Legendre and Gauss-Jacobi quadrature nodes and weights. SIAM J Sci Comput. 2013;35:A652‐A674. · Zbl 1270.65017
[44] SumelkaW. Fractional calculus for continuum mechanics‐anisotropic non‐locality. arXiv preprint, arXiv:1502.02023 2015.
[45] ReddyJN. Introduction to the Finite Element Method. McGraw‐Hill Education; 2019.
[46] TimoskenkoSP, GoodierJN. Theory of Elasticity. 3rd ed.McGraw‐Hill; 1970. · Zbl 0266.73008
[47] LoveAEH. A Treatise on the Mathematical Theory of Elasticity. University Press; 1927. · JFM 53.0752.01
[48] ChallamelN, WangC. The small length scale effect for a non‐local cantilever beam: a paradox solved. Nanotechnology. 2008;19:345703.
[49] RomanoG, BarrettaR, DiacoM, deSciarraFM. Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams. Int J Mech Sci. 2017;121:151‐156.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.