×

Stability analysis in a couple-stress fluid layer with variable viscosity heated from below: different conducting boundaries. (English) Zbl 07843858

Summary: The linear stability analysis technique and non-linear stability analysis technique are applied for a couple-stress fluid layer having variable viscosity depending on temperature and pressure. The linear and nonlinear threshold that encapsulates the physics of the onset for convection is found to be same. Eigenvalue problems for free-free (FF), rigid-free (RF) and rigid-rigid (RR) conducting boundaries are solved with the help of a single-term Galerkin technique. The couple stress is seen to have a stabilizing impact while the viscosity variation has destabilizing impact on the system.

MSC:

76Exx Hydrodynamic stability
76Rxx Diffusion and convection
35Qxx Partial differential equations of mathematical physics and other areas of application
Full Text: DOI

References:

[1] Reynolds, O., On the dynamical theory of incompressible viscous fluids and the determination of the criterion, Philos. Trans. Royal Soc. London A, 186, 123-164, 1895 · JFM 26.0872.02
[2] McF, W., Orr, Stability or instability of the steady motions of a perfect liquid, Proc. Royal Irish Acad. A, 27, 9-68, 1907, 69-138
[3] Joseph, D. D., On the stability of the Boussinesq equations, Arch. Ration. Mech. Anal., 20, 59-71, 1965 · Zbl 0136.23402
[4] Joseph, D. D., Nonlinear stability of the Boussinesq equations by the method of energy, Arch. Ration. Mech. Anal., 22, 163-184, 1966 · Zbl 0141.43803
[5] Serrin, J., On the stability of viscous fluid motions, Arch. Ration. Mech. Anal., 3, 1-13, 1959 · Zbl 0086.20001
[6] Galdi, G. P.; Straughan, B., A nonlinear analysis of the stabilizing effect of rotation in the Bénard problem, Proc. R Soc. Lond. B Biol. Sci., 402, 257-283, 1985 · Zbl 0593.76049
[7] Galdi, G. P., Nonlinear stability of the magnetic Bénard problem via a generalized energy method, Arch. Ration. Mech. Anal., 87, 167-186, 1985 · Zbl 0611.76069
[8] Rionero, S., Metodi variazionali per la stabilitfi asintotica in media in magne toidrodinamica, Ann. Mat. Pura. Appl., 78, 339-364, 1968 · Zbl 0182.29402
[9] Straughan, B., The Energy Method, Stability, and Nonlinear Convection, 2004, Springer Verlag: Springer Verlag New York · Zbl 1032.76001
[10] Mulone, G.; Rionero, S., On the nonlinear stability of the rotating Bénard problem via the Lyapunov direct method, J. Math. Anal. Appl., 144, 109-127, 1989 · Zbl 0699.76061
[11] Galdi, G. P.; Padula, M., A new approach to energy theory in the stability of fluid motion, Arch. Ration. Mech. Anal., 110, 187-286, 1990 · Zbl 0719.76035
[12] Qin, Y.; Kaloni, P. N., Nonlinear stability problem of a rotating porous layer, Quart. J. Appl. Mathem., 53, 129-142, 1995 · Zbl 0816.76035
[13] R. Devi Sunil; Mahajan, A., Global stability for thermal convection in a couple- stress fluid, Int. Commun. Heat Mass Transf., 38, 938-942, 2011
[14] Shankar, B. M.; Kumar, J.; Shivakumara, I. S., Stability of natural convection in a vertical couple stress fluid layer, Int. J. Heat Mass Transf., 78, 447-459, 2014
[15] Mahajan, A.; Nandal, R., On the stability of penetrative convection in a couple- stress fluid, Int. J. Appl. Comput. Math., 3, 3745-3758, 2017 · Zbl 1397.76042
[16] Hajesfandiari, A.; Hadjesfandiari, A. R.; Dargush, G. F., Couple stress Rayleigh- Bénard convection in a square cavity, J. Non-Newtonian Fluid Mech., 259, 91-110, 2018
[17] Stokes, V. K., Couple stresses in fluids, Phys. Fluids, 9, 1709-1715, 1966
[18] Du. Buat PLG, Principles d’hydraulique 2 Ed., Paris, (1786).
[19] Stokes, G. G., On the theories of the internal friction of fluids in motion, and motion of elastic solids, Trans. Cambridge Philos. Soc., 8, 287-305, 1845
[20] Luan, H. M., Pressure dependent viscosity and dissipative heating in capillary rheometry of polymer melts, Rheol. Acta, 42, 295-308, 2003
[21] Rajagopal, K. R.; Saccomandi, G.; Vergori, L., On the Oberbeck - Boussinesq approximation in fluids with pressure-dependent viscosities, Nonlin. Anal.s Real Word Appl., 10, 2, 1139-1150, 2009 · Zbl 1167.76368
[22] Rajagopal, K. R.; Saccomandi, G.; Vergori, L., Stability analysis of the Rayleigh Bènard convection for a fluid with temperature and pressure dependent viscosity, ZAMP, 60, 739-755, 2009 · Zbl 1169.76023
[23] Sunil, S. Choudhary, P.K. Bharti, Global stability for thermal convection in a couple-stress fluid saturating with temperature and pressure dependent viscosity, Studia Geotechnica et Mechanica 3 (2013) 85-102. doi:10.2478/sgem-2013-0032.
[24] Sunil, S. Choudhary, A. Mahajan, Conditional stability for thermal convection in a rotating couple-stress fluid saturating a porous medium with temperature and pressure dependent viscosity, J. Geophys. Eng. 10 (2013) 11 045013. doi: 10.1088/1742-2132/10/4/045013.
[25] Sunil, S. Choudhary, A. Mahajan, Stability analysis of a couple-stress fluid saturating a porous medium with temperature and pressure dependent viscosity using a thermal non-equilibrium model, Appl. Math. Comput. 340 (2019) 15-30. doi: 10.1016/j.amc.2018.08.025. · Zbl 1428.76206
[26] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Dover, New York, (1981). · Zbl 0142.44103
[27] Dass, T.; Gunakala, S. R.; Comissiong, D. M.G., The combined effect of couple stresses, variable viscosity and velocity slip on the lubrication of finite journal bearings, Ain Shams Eng. J., 11, 501-518, 2020
[28] Yadav, D.; Mahabaleshwar, U. S.; Wakif, A.; Chand, R., Significance of the inconstant viscosity and internal heat generation on the occurrence of Darcy- Brinkman convective motion in a couple stress fluid saturated porous medium: an analytical solution, Int. Commun. Heat Mass Transf., 122, 105165, 2021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.