×

Hybrid-Trefftz stress elements for plate bending. (English) Zbl 07843277

Summary: The hybrid-Trefftz stress element is used to emulate conventional finite elements for analysis of Kirchhoff and Mindlin-Reissner plate bending problems. The element is hybrid because it is based on the independent approximation of the stress-resultant and boundary displacement fields. The Trefftz variant is consequent on the use of the formal solutions of the governing Lagrange equation to approximate the stress-resultant field. In order to emulate conventional elements, nodal functions are used to approximate the displacements on the boundary of the element. Duality is used to set up the element solving system. The associated variational statements and conditions for existence and uniqueness of solutions are recovered. Triangular and quadrilateral elements are tested and characterized in terms of convergence, sensitivity to shear-locking, and shape distortion. Their relative performance is assessed using assumed strain Mixed Interpolation of Tensorial Components (MITC) elements and recently proposed Trefftz-based elements. This relative assessment is extended to a hypersingular problem to illustrate the effect of enriching the domain and boundary approximation bases.
{© 2019 John Wiley & Sons, Ltd.}

MSC:

74Sxx Numerical and other methods in solid mechanics
74Kxx Thin bodies, structures
65Nxx Numerical methods for partial differential equations, boundary value problems
Full Text: DOI

References:

[1] CenS, ShangY. Developments of Mindlin‐Reissner plate elements. Math Probl Eng. 2015;2015:1‐12. https://doi.org/10.1155/2015/456740. · Zbl 1394.74099 · doi:10.1155/2015/456740
[2] FreitasJAT, AlmeidaJPM, PereiraEBR. Non‐conventional formulations for the finite element method. Comput Mech. 1999;23(5‐6):488‐501. https://doi.org/10.1007/s004660050428. · Zbl 0946.74068 · doi:10.1007/s004660050428
[3] TrefftzE. Ein Gegenstück zum Ritzschen Verfahren. Paper presented at: Proc 2nd International Congress in Applied Mechanics; 1926; Zurich, Germany.
[4] JirousekJ, LeonN. A powerful finite element for plate bending. Comput Methods Appl Mech Eng. 1977;12:77‐96. https://doi.org/10.1016/0045‐7825(77)90052‐4. · Zbl 0366.73065 · doi:10.1016/0045‐7825(77)90052‐4
[5] JirousekJ, GuexL. The hybrid‐Trefftz finite element model and its application to plate bending. Int J Numer Methods Eng. 1987;23:651‐693. https://doi.org/10.1002/nme.1620230410. · Zbl 0585.73135 · doi:10.1002/nme.1620230410
[6] JirousekJ, WróblewskiA, SzybińskiB. A new 12 DOF quadrilateral element for analysis of thick and thin plates. Lausanne, Switzerland: EPFL; 1994. LSC Int. Report 94/9. https://doi.org/10.1002/nme.1620381508. · Zbl 0854.73067 · doi:10.1002/nme.1620381508
[7] PetrolitoJ. Hybrid‐Trefftz quadrilateral elements for thick plate analysis. Comput Methods Appl Mech Eng. 1990;78:331‐351. https://doi.org/10.1016/0045‐7825(90)90005‐7. · Zbl 0707.73073 · doi:10.1016/0045‐7825(90)90005‐7
[8] PetrolitoJ. Triangular thick plate elements based on a hybrid‐Trefftz approach. Comput Struct. 1996;60:883‐894. https://doi.org/10.1016/0045‐7949(95)00453‐X. · Zbl 0918.73220 · doi:10.1016/0045‐7949(95)00453‐X
[9] ChooYS, ChoiN, LeeBC. A new hybrid‐Trefftz triangular and quadrilateral plate elements. Appl Math Model. 2010;34:14‐23. https://doi.org/10.1016/j.apm.2009.03.022. · Zbl 1185.90048 · doi:10.1016/j.apm.2009.03.022
[10] Rezaiee‐PajandM, KarkonM. Two higher order hybrid‐Trefftz elements for thin plate bending analysis. Finite Elem Anal Des. 2014;85:73‐86. https://doi.org/10.1016/j.finel.2014.03.003. · doi:10.1016/j.finel.2014.03.003
[11] CenS, ShangY, LiC‐F, LiH‐G. Hybrid displacement function element method: a simple hybrid‐Trefftz stress element method for analysis of Mindlin‐Reissner plate. Int J Numer Methods Eng. 2014;98(3):203‐234. https://doi.org/10.1002/nme.4632. · Zbl 1352.74335 · doi:10.1002/nme.4632
[12] ShangY, CenS, LiC‐F, HuangJ‐B. An effective hybrid displacement function element method for solving the edge effect of Mindlin‐Reissner plate. Int J Numer Methods Eng. 2015;102(8):1449‐1487. https://doi.org/10.1002/nme.4843. · Zbl 1352.74169 · doi:10.1002/nme.4843
[13] JirousekJ, N’DiayeM. Solution of orthotropic plates based on p‐extension of the hybrid‐Trefftz finite element model. Comput Struct. 1990;34:51‐62. https://doi.org/10.1016/0045‐7949(90)90299‐H. · Zbl 0703.73077 · doi:10.1016/0045‐7949(90)90299‐H
[14] PetrolitoJ. Vibration and stability analysis of thick orthotropic plates using hybrid‐Trefftz elements. Appl Math Model. 2014;38:5858‐5869. https://doi.org/10.1016/j.apm.2014.04.026. · Zbl 1428.74213 · doi:10.1016/j.apm.2014.04.026
[15] KarkonM. Hybrid‐Trefftz formulation for analysis of anisotropic and symmetric laminated plates. Compos Struct. 2015;134:460‐474. https://doi.org/10.1016/j.compstruct.2015.08.098. · doi:10.1016/j.compstruct.2015.08.098
[16] FreitasJAT, JiZ‐Y. Hybrid‐Trefftz equilibrium model for crack problems. Int J Numer Methods Eng. 1996;39:569‐584. https://doi.org/10.1002/(SICI)1097‐0207(19960229)39:4<569::AID‐NME870>3.0.CO;2‐8. · Zbl 0845.73073 · doi:10.1002/(SICI)1097‐0207(19960229)39:4<569::AID‐NME870>3.0.CO;2‐8
[17] SohAK, LongZ‐F, CenS. A Mindlin plate triangular element with improved interpolation based on Timoshenko’s beam theory. Commun Numer Methods Eng. 1999;15:527‐532. https://doi.org/10.1002/(SICI)1099‐0887(199907)15:7<527::AID‐CNM273>3.0.CO;2‐B. · Zbl 0948.74067 · doi:10.1002/(SICI)1099‐0887(199907)15:7<527::AID‐CNM273>3.0.CO;2‐B
[18] FreitasJAT, TiagoC. Wedge and crack solutions for Mindlin‐Reissner plates. Int J Fract. In press 2020. https://doi.org/10.1007/s10704‐019‐00397‐3. · doi:10.1007/s10704‐019‐00397‐3
[19] CastroLMC, FreitasJAT. Wavelets in hybrid‐mixed stress elements. Comput Methods Appl Mech Eng. 2001;190(31):3977‐3998. https://doi.org/10.1016/S0045‐7825(00)00313‐3. · Zbl 1029.74043 · doi:10.1016/S0045‐7825(00)00313‐3
[20] AyadR, RigolotA. An improved four‐node hybrid‐mixed element based upon Mindlin’s plate theory. Int J Numer Methods Eng. 2002;55:705‐731. https://doi.org/10.1002/nme.528. · Zbl 1058.74633 · doi:10.1002/nme.528
[21] PereiraEMBR, FreitasJAT. A hybrid‐mixed finite element model based on Legendre polynomials for Reissner‐Mindlin plates. Comput Methods Appl Mech Eng. 1996;136(1‐2):111‐126. https://doi.org/10.1016/0045‐7825(96)01061‐4. · Zbl 0891.73069 · doi:10.1016/0045‐7825(96)01061‐4
[22] HuB, WangZ, XuYC. Combined hybrid method applied in the Reissner‐Mindlin plate model. Finite Elem Anal Des. 2010;46:428‐437. https://doi.org/10.1016/j.finel.2010.01.003. · doi:10.1016/j.finel.2010.01.003
[23] Moitinho de AlmeidaJP, MaunderEAW. Equilibrium Finite Element Formulations. Chichester, UK and Hoboken, NJ: Wiley; 2017. · Zbl 1360.65008
[24] Beirão da VeigaL, BuffaA, LovadinaC, MartinelliM, SangalliG. An isogeometric method for the Reissner‐Mindlin plate bending problem. Comput Methods Appl Mech Eng. 2012;209‐212:45‐53. https://doi.org/10.1016/j.cma.2011.10.009. · Zbl 1243.74101 · doi:10.1016/j.cma.2011.10.009
[25] DvorkinEN, BatheK‐J. A continuum mechanics based four‐node shell element for general non‐linear analysis. Eng Comput. 1984;1(1):77‐88. https://doi.org/10.1108/eb023562. · doi:10.1108/eb023562
[26] BatheK‐J, BucalemML, BrezziF. Displacement and stress convergence of our MITC plate bending elements. Eng Comput. 1990;7(4):291‐302. https://doi.org/10.1108/eb023816. · doi:10.1108/eb023816
[27] BucalemML, BatheK‐J. Higher‐order MITC general shell elements. Int J Numer Methods Eng. 1993;36(21):3729‐3754. https://doi.org/10.1002/nme.1620362109. · Zbl 0800.73466 · doi:10.1002/nme.1620362109
[28] BatheK‐J. Finite Element Procedures. Upper Saddle River, NJ: Prentice Hall; 1996.
[29] SouthwellRV. On the analogues relating flexure and extension of flat plates. Quat J Mech Appl Math. 1950;3(3):257‐270. https://doi.org/10.1093/qjmam/3.3.257. · Zbl 0041.10401 · doi:10.1093/qjmam/3.3.257
[30] PianTHH. Derivation of element stiffness matrices by assumed stress distributions. AIAA J. 1967;3:1333‐1335. https://doi.org/10.2514/3.2546. · doi:10.2514/3.2546
[31] PianTHH, TongP. Basis of finite element methods for solid continua. Int J Numer Methods Eng. 1969;3:3‐28. https://doi.org/10.1002/nme.1620010103. · Zbl 0252.73052 · doi:10.1002/nme.1620010103
[32] FreitasJAT, CismasiuC, WangZ‐M. Comparative analysis of hybrid‐Trefftz stress and displacement elements. Arch Comput Methods Eng. 1999;6(1):35‐59. https://doi.org/10.1007/BF02828329. · doi:10.1007/BF02828329
[33] FreitasJAT. Formulation of elastostatic hybrid‐Trefftz stress elements. Comput Methods Appl Mech Eng. 1998;153(1‐2):127‐151. https://doi.org/10.1016/S0045‐7825(97)00042‐X. · Zbl 0991.74077 · doi:10.1016/S0045‐7825(97)00042‐X
[34] ReissnerE. On a variational theorem in elasticity. J Math Phys. 1950;29(1):90‐95. https://doi.org/10.1002/sapm195029190. · Zbl 0039.40502 · doi:10.1002/sapm195029190
[35] BarberJR. Elasticity, Solid Mechanics and its Applications. Dordrecht, The Netherlands: Kluwer Academic Publishers; 1992. · Zbl 0787.73001
[36] BatozJL, LardeurP. A discrete shear triangular nine D.O.F. element for the analysis of thick to very thin plates. Int J Numer Methods Eng. 1989;28(3):533‐560. https://doi.org/10.1002/nme.1620280305. · Zbl 0675.73042 · doi:10.1002/nme.1620280305
[37] TimoshenkoSP, Woinowsky‐KriegerS. Theory of Plates and Shells. Singapore: McGraw‐Hill; 1959.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.