×

Computational technique for multi-dimensional non-linear weakly singular fractional integro-differential equation. (English) Zbl 07843060

Summary: In this article, our aim is to construct two new schemes for numerically solving the nonlinear weakly singular integro-fractional differential equation (WSIFDE) in 1D and 2D. Scheme-I uses 1D and 2D shifted Legendre polynomials (SLP) as basis functions whereas scheme-II uses 1D and 2D interpolating basis function (IBF) as basis functions. The main characteristic of these schemes is that it reduces the original equation into the system of nonlinear algebraic equations and thus greatly simplifying the problem. This system is then solved to find the unknown coefficients. The working of proposed schemes is illustrated on several test examples and the obtained numerical results confirm the desired accuracy and efficiency of the schemes. Further, we investigated the convergence analysis and also established the error bounds for the proposed schemes. Finally, it is found that both the schemes are easy to implement, but scheme-I produces better numerical results and also takes less CPU time in comparison to scheme-II.

MSC:

65Rxx Numerical methods for integral equations, integral transforms
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
45Kxx Integro-partial differential equations
Full Text: DOI

References:

[1] Tarasov, V. E., Fractional integro-differential equations for electromagnetic waves in dielectric media, Theoret. Math. Phys., 158, 3, 355-359, (2009) · Zbl 1177.78020
[2] Sokolov, I. M.; Klafter, J., From diffusion to anomalous diffusion: a century after Einstein’s Brownian motion, Chaos, 15, 2, Article 026103 pp., (2005) · Zbl 1080.82022
[3] Kedia, N.; Alikhanov, A. A.; Singh, V. K., Stable numerical schemes for time-fractional diffusion equation with generalized memory kernel, Appl. Numer. Math., 172, 546-565, (2022) · Zbl 1484.65182
[4] Widom, A., Velocity fluctuations of a hard-core Brownian particle, Phys. Rev. A, 3, 4, 1394, (1971)
[5] Van Aartrijk, M.; Clercx, H., Vertical dispersion of light inertial particles in stably stratified turbulence: The influence of the Basset force, Phys. Fluids, 22, 1, Article 013301 pp., (2010) · Zbl 1183.76536
[6] Mainradi, F.; Pironi, P., The fractional Langevin equation: Brownian motion revisted, Extracta Math., 10, 140-154, (1996)
[7] Tang, T., A finite difference scheme for partial integro-differential equations with a weakly singular kernel, Appl. Numer. Math., 11, 4, 309-319, (1993) · Zbl 0768.65093
[8] Baratella, P.; Orsi, A. P., A new approach to the numerical solution of weakly singular Volterra integral equations, J. Comput. Appl. Math., 163, 2, 401-418, (2004) · Zbl 1038.65144
[9] Diogo, T.; Lima, P., Superconvergence of collocation methods for a class of weakly singular Volterra integral equations, J. Comput. Appl. Math., 218, 2, 307-316, (2008) · Zbl 1146.65084
[10] Nemati, S.; Lima, P. M.; Ordokhani, Y., Numerical solution of a class of two-dimensional nonlinear Volterra integral equations using Legendre polynomials, J. Comput. Appl. Math., 242, 53-69, (2013) · Zbl 1255.65248
[11] Ma, Z.; Alikhanov, A. A.; Huang, C.; Zhang, G., A multi-domain spectral collocation method forVolterra integral equations with a weakly singular kernel, Appl. Numer. Math., 167, 218-236, (2021) · Zbl 1467.65118
[12] Chen, C.; Thomée, V.; Wahlbin, L. B., Finite element approximation of a parabolic integro-differential equation with a weakly singular kernel, Math. Comp., 58, 198, 587-602, (1992) · Zbl 0766.65120
[13] Jalalvand, M.; Jazbi, B.; Mokhtarzadeh, M., A finite difference method for the smooth solution of linear Volterra integral equations, Int. J. Nonlinear Anal. Appl., 4, 2, 1-10, (2013) · Zbl 1284.49047
[14] Lopez-Marcos, J., A difference scheme for a nonlinear partial integro-differential equation, SIAM J. Numer. Anal., 27, 1, 20-31, (1990), https://www.jstor.org/stable/2157896 · Zbl 0693.65097
[15] McLean, W.; Sloan, I. H.; Thomée, V., Time discretization via Laplace transformation of an integro-differential equation of parabolic type, Numer. Math., 102, 3, 497-522, (2006) · Zbl 1097.65131
[16] Fairweather, G., Spline collocation methods for a class of hyperbolic partial integro-differential equations, SIAM J. Numer. Anal., 31, 2, 444-460, (1994), https://www.jstor.org/stable/2158010 · Zbl 0814.65137
[17] Yan, D., Solutions for a category of singular nonlinear fractional differential equations subject to integral boundary conditions, Bound. Value Probl., 2022, 1, 1-16, (2022) · Zbl 1490.34015
[18] Akram, T.; Ali, Z.; Rabiei, F.; Shah, K.; Kumam, P., A numerical study of nonlinear fractional order partial integro-differential equation with a weakly singular kernel, Fractal Fract., 5, 3, 85, (2021)
[19] Belhireche, H.; Guebbai, H., On the mixed nonlinear integro-differential equations with weakly singular kernel, Comput. Appl. Math., 41, 1, 1-17, (2022) · Zbl 1499.45003
[20] Santra, S.; Mohapatra, J., Numerical treatment of multi-term time fractional nonlinear KdV equations with weakly singular solutions, Int. J. Model. Simul., 1-11, (2022)
[21] Maurya, R. K.; Devi, V.; Srivastava, N.; Singh, V. K., An efficient and stable Lagrangian matrix approach to Abel integral and integro-differential equations, Appl. Math. Comput., 374, Article 125005 pp., (2020) · Zbl 1436.65214
[22] Yan, Y.; Fairweather, G., Orthogonal spline collocation methods for some partial integro-differential equations, SIAM J. Numer. Anal., 29, 3, 755-768, (1992) · Zbl 0756.65157
[23] Da, X., On the discretization in time for a parabolic integro-differential equation with a weakly singular kernel II: nonsmooth initial data, Appl. Math. Comput., 57, 1, 29-60, (1993) · Zbl 0782.65161
[24] Pani, A. K.; Fairweather, G.; Fernandes, R. I., Alternating direction implicit orthogonal spline collocation methods for an evolution equation with a positive-type memory term, SIAM J. Numer. Anal., 46, 1, 344-364, (2008) · Zbl 1160.65068
[25] Yunqing, H., Time discretization scheme for an integro-differential equation of parabolic type, J. Comput. Math., 12, 3, 259-263, (1994), https://www.jstor.org/stable/2157515 · Zbl 0815.65144
[26] Dehghan, M., Solution of a partial integro-differential equation arising from viscoelasticity, Int. J. Comput. Math., 83, 1, 123-129, (2006) · Zbl 1087.65119
[27] Fakhar-Izadi, F.; Dehghan, M., Space-time spectral method for a weakly singular parabolic partial integro-differential equation on irregular domains, Comput. Math. Appl., 67, 10, 1884-1904, (2014) · Zbl 1367.65147
[28] Lakestani, M.; Saray, B. N.; Dehghan, M., Numerical solution for the weakly singular Fredholm integro-differential equations using Legendre multiwavelets, J. Comput. Appl. Math., 235, 11, 3291-3303, (2011) · Zbl 1216.65185
[29] Yang, Y.; Deng, G.; Tohidi, E., High accurate convergent spectral Galerkin methods for nonlinear weakly singular Volterra integro-differential equations, Comput. Appl. Math., 40, 4, 1-32, (2021) · Zbl 1476.33008
[30] Khan, A.; Khan, H.; Gómez-Aguilar, J.; Abdeljawad, T., Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel, Chaos Solitons Fractals, 127, 422-427, (2019) · Zbl 1448.34046
[31] Shi, G.; Gong, Y.; Yi, M., Alternative Legendre polynomials method for nonlinear fractional integro-differential equations with weakly singular kernel, J. Math., 2021, (2021) · Zbl 1477.65271
[32] Samadyar, N.; Mirzaee, F., Numerical scheme for solving singular fractional partial integro-differential equation via orthonormal Bernoulli polynomials, Int. J. Numer. Modelling, Electron. Netw. Devices Fields, 32, 6, Article e2652 pp., (2019)
[33] Ali, K. K.; Abd El Salam, M. A.; Mohamed, E. M.; Samet, B.; Kumar, S.; Osman, M., Numerical solution for generalized nonlinear fractional integro-differential equations with linear functional arguments using Chebyshev series, Adv. Difference Equ., 2020, 1, 1-23, (2020) · Zbl 1486.65289
[34] Zhang, G.; Zhu, R., Runge-Kutta convolution quadrature methods with convergence and stability analysis for nonlinear singular fractional integro-differential equations, Commun. Nonlinear Sci. Numer. Simul., 84, Article 105132 pp., (2020) · Zbl 1450.65182
[35] Kumar, Y.; Singh, S.; Srivastava, N.; Singh, A.; Singh, V. K., Wavelet approximation scheme for distributed order fractional differential equations, Comput. Math. Appl., 80, 8, 1985-2017, (2020) · Zbl 1452.65140
[36] Kumar, Y.; Singh, V. K., Computational approach based on wavelets for financial mathematical model governed by distributed order fractional differential equation, Math. Comput. Simulation, 190, 531-569, (2021) · Zbl 1540.65420
[37] Babolian, E.; Shamloo, A. S., Numerical solution of Volterra integral and integro-differential equations of convolution type by using operational matrices of piecewise constant orthogonal functions, J. Comput. Appl. Math., 214, 2, 495-508, (2008) · Zbl 1135.65043
[38] Singh, V. K.; Postnikov, E. B., Operational matrix approach for solution of integro-differential equations arising in theory of anomalous relaxation processes in vicinity of singular point, Appl. Math. Model., 37, 10-11, 6609-6616, (2013) · Zbl 1426.65220
[39] Singh, S.; Patel, V. K.; Singh, V. K., Operational matrix approach for the solution of partial integro-differential equation, Appl. Math. Comput., 283, 195-207, (2016) · Zbl 1410.65467
[40] Singh, S.; Patel, V. K.; Singh, V. K.; Tohidi, E., Numerical solution of nonlinear weakly singular partial integro-differential equation via operational matrices, Appl. Math. Comput., 298, 310-321, (2017) · Zbl 1411.65139
[41] Singh, S.; Patel, V. K.; Singh, V. K., Convergence rate of collocation method based on wavelet for nonlinear weakly singular partial integro-differential equation arising from viscoelasticity, Numer. Methods Partial Differential Equations, 34, 5, 1781-1798, (2018) · Zbl 1417.65181
[42] Patel, V. K.; Singh, S.; Singh, V. K.; Tohidi, E., Two dimensional wavelets collocation scheme for linear and nonlinear Volterra weakly singular partial integro-differential equations, Int. J. Appl. Comput. Math., 4, 5, 132, (2018) · Zbl 1401.35306
[43] Saadatmandi, A.; Dehghan, M., A new operational matrix for solving fractional-order differential equations, Comput. Math. Appl., 59, 3, 1326-1336, (2010) · Zbl 1189.65151
[44] Toutounian, F.; Tohidi, E.; Shateyi, S., A collocation method based on the Bernoulli operational matrix for solving high-order linear complex differential equations in a rectangular domain, (Abstr. Appl. Anal., 2013, (2013), Hindawi) · Zbl 1275.65041
[45] Singh, S.; Patel, V. K.; Singh, V. K.; Tohidi, E., Application of Bernoulli matrix method for solving two-dimensional hyperbolic telegraph equations with Dirichlet boundary conditions, Comput. Math. Appl., 75, 7, 2280-2294, (2018) · Zbl 1409.65078
[46] Zogheib, B.; Tohidi, E., A new matrix method for solving two-dimensional time-dependent diffusion equations with Dirichlet boundary conditions, Appl. Math. Comput., 291, 1-13, (2016) · Zbl 1410.65408
[47] Singh, S.; Devi, V.; Tohidi, E.; Singh, V. K., An efficient matrix approach for two-dimensional diffusion and telegraph equations with Dirichlet boundary conditions, Physica A, 545, Article 123784 pp., (2020)
[48] Patel, V. K.; Singh, S.; Singh, V. K., Two-dimensional shifted Legendre polynomial collocation method for electromagnetic waves in dielectric media via almost operational matrices, Math. Methods Appl. Sci., 40, 10, 3698-3717, (2017) · Zbl 1373.78454
[49] Srivastava, N.; Singh, A.; Kumar, Y.; Singh, V. K., Efficient numerical algorithms for Riesz-space fractional partial differential equations based on finite difference/operational matrix, Appl. Numer. Math., 161, 8, 244-274, (2021) · Zbl 1475.65081
[50] Tavares, D.; Almeida, R.; Torres, D. F., Caputo derivatives of fractional variable order: numerical approximations, Commun. Nonlinear Sci. Numer. Simul., 35, 69-87, (2016) · Zbl 1538.65275
[51] Malkawi, E., Spatial rotation of the fractional derivative in two-dimensional space, Adv. Math. Phys., 2015, (2015) · Zbl 1326.83060
[52] Bazm, S.; Hosseini, A., Numerical solution of nonlinear integral equations using alternative Legendre polynomials, J. Appl. Math. Comput., 56, 1-2, 25-51, (2018) · Zbl 1444.65073
[53] Howell, G. W., Derivative error bounds for Lagrange interpolation: an extension of Cauchy’s bound for the error of Lagrange interpolation, J. Approx. Theory, 67, 2, 164-173, (1991) · Zbl 0749.41005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.