×

Finite axiomatizability of the rank and the dimension of a pro-\( \pi\) group. (English) Zbl 07842505

Summary: The Prüfer rank \(\operatorname{rk}(G)\) of a profinite group \(G\) is the supremum, across all open subgroups \(H\) of \(G\), of the minimal number of generators \(\operatorname{d}(H)\). It is known that, for any given prime \(p\), a profinite group \(G\) admits the structure of a \(p\)-adic analytic group if and only if \(G\) is virtually a pro-\(p\) group of finite rank. The dimension \(\operatorname{dim}\, G\) of a \(p\)-adic analytic profinite group \(G\) is the analytic dimension of \(G\) as a \(p\)-adic manifold; it is known that \(\operatorname{dim}\, G\) coincides with the rank \(\operatorname{rk}(U)\) of any uniformly powerful open pro-\(p\) subgroup \(U\) of \(G\).
Let \(\pi\) be a finite set of primes, let \(r \in \mathbb{N}\) and let \(\mathbf{r} = (r_p)_{p \in \pi}\), \(\mathbf{d} = (d_p)_{p \in \pi}\) be tuples in \(\{0, 1, \ldots,r\} \). We show that there is a single sentence \(\sigma_{\pi,r,\mathbf{r},\mathbf{d}}\) in the first-order language of groups such that for every pro-\( \pi\) group \(G\) the following are equivalent: (i) \( \sigma_{\pi,r,\mathbf{r},\mathbf{d}}\) holds true in the group \(G\), that is, \(G \models \sigma_{\pi,r,\mathbf{r},\mathbf{d}} \); (ii) \(G\) has rank \(r\) and, for each \(p \in \pi \), the Sylow pro-\(p\) subgroups of \(G\) have rank \(r_p\) and dimension \(d_p\).
Loosely speaking, this shows that, for a pro-\( \pi\) group \(G\) of bounded rank, the precise rank of \(G\) as well as the ranks and dimensions of the Sylow subgroups of \(G\) can be recognized by a single sentence in the basic first-order language of groups.

MSC:

20E18 Limits, profinite groups
03C98 Applications of model theory
20A15 Applications of logic to group theory
20D15 Finite nilpotent groups, \(p\)-groups
20D20 Sylow subgroups, Sylow properties, \(\pi\)-groups, \(\pi\)-structure
22E20 General properties and structure of other Lie groups

References:

[1] 10.1017/CBO9780511470882 · doi:10.1017/CBO9780511470882
[2] 10.4064/fm-47-1-57-103 · Zbl 0088.24803 · doi:10.4064/fm-47-1-57-103
[3] 10.1007/s11856-007-0088-5 · Zbl 1147.20015 · doi:10.1007/s11856-007-0088-5
[4] 10.1016/S0021-8693(03)00503-9 · Zbl 1037.20019 · doi:10.1016/S0021-8693(03)00503-9
[5] 10.1017/CBO9780511551574 · doi:10.1017/CBO9780511551574
[6] 10.1112/blms/bdn069 · Zbl 1200.20023 · doi:10.1112/blms/bdn069
[7] ; Klopsch, Benjamin, An introduction to compact p-adic Lie groups, Lectures on profinite topics in group theory. London Math. Soc. Stud. Texts, 77, 7, 2011 · Zbl 1217.20017
[8] 10.1007/BF01195209 · Zbl 0679.20028 · doi:10.1007/BF01195209
[9] 10.1112/S0024609397002701 · Zbl 0884.20013 · doi:10.1112/S0024609397002701
[10] 10.1112/blms/bdw064 · Zbl 1430.03054 · doi:10.1112/blms/bdw064
[11] 10.1007/BF00739417 · Zbl 0823.20024 · doi:10.1007/BF00739417
[12] 10.1112/plms.12420 · Zbl 1509.03113 · doi:10.1112/plms.12420
[13] 10.4007/annals.2007.165.171 · Zbl 1126.20018 · doi:10.4007/annals.2007.165.171
[14] 10.4171/GGD/136 · Zbl 1243.20036 · doi:10.4171/GGD/136
[15] 10.1017/CBO9780511600562 · doi:10.1017/CBO9780511600562
[16] 10.1007/978-3-642-01642-4 · Zbl 1197.20022 · doi:10.1007/978-3-642-01642-4
[17] 10.1515/jgth.5.2.129 · Zbl 1012.20013 · doi:10.1515/jgth.5.2.129
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.