×

Efficient constructions for the Győri-Lovász theorem on almost chordal graphs. (English) Zbl 07842209

Paulusma, Daniël (ed.) et al., Graph-theoretic concepts in computer science. 49th international workshop, WG 2023, Fribourg, Switzerland, June 28–30, 2023. Revised selected papers. Cham: Springer. Lect. Notes Comput. Sci. 14093, 143-156 (2023).
Summary: In the 1970s, Győri and Lovász showed that for a \(k\)-connected \(n\)-vertex graph, a given set of terminal vertices \(t_1, \dots , t_k\) and natural numbers \(n_1, \dots , n_k\) satisfying \(\sum_{i=1}^k n_i = n\), a connected vertex partition \(S_1, \dots , S_k\) satisfying \(t_i \in S_i\) and \(|S_i| = n_i\) exists. However, polynomial time algorithms to actually compute such partitions are known so far only for \(k \le 4\). This motivates us to take a new approach and constrain this problem to particular graph classes instead of restricting the values of \(k\). More precisely, we consider \(k\)-connected chordal graphs and a broader class of graphs related to them. For the first class, we give an algorithm with \(\mathcal{O}(n^2)\) running time that solves the problem exactly, and for the second, an algorithm with \(\mathcal{O}(n^4)\) running time that deviates on at most one vertex from the required vertex partition sizes.
For the entire collection see [Zbl 1535.68010].

MSC:

68R10 Graph theory (including graph drawing) in computer science

References:

[1] Broersma, H., Dahlhaus, E., Kloks, T.: Algorithms for the treewidth and minimum fill-in of HHD-free graphs. In: International Workshop on Graph-Theoretic Concepts in Computer Science (WG), pp. 109-117 (1997). doi:10.1007/BFb0024492 · Zbl 0890.68091
[2] Chandran, L.S., Cheung, Y.K., Issac, D.: Spanning tree congestion and computation of generalized Györi-Lovász partition. In: International Colloquium on Automata, Languages, and Programming, (ICALP). LIPIcs, vol. 107, pp. 32:1-32:14 (2018). doi:10.4230/LIPIcs.ICALP.2018.32 · Zbl 1499.68259
[3] Chen, J.; Kleinberg, RD; Lovász, L.; Rajaraman, R.; Sundaram, R.; Vetta, A., (Almost) tight bounds and existence theorems for single-commodity confluent flows, J. ACM, 54, 4, 16 (2007) · Zbl 1311.90017 · doi:10.1145/1255443.1255444
[4] Győri, E.: On division of graphs to connected subgraphs, combinatorics. In: Colloq. Math. Soc. Janos Bolyai, 1976 (1976)
[5] Hoyer, A.: On the independent spanning tree conjectures and related problems. Ph.D. thesis, Georgia Institute of Technology (2019)
[6] Jamison, B.; Olariu, S., On the semi-perfect elimination, Adv. Appl. Math., 9, 3, 364-376 (1988) · Zbl 0684.05020 · doi:10.1016/0196-8858(88)90019-X
[7] Lovász, L., A homology theory for spanning tress of a graph, Acta Math. Hungar., 30, 3-4, 241-251 (1977) · Zbl 0403.05040 · doi:10.1007/BF01896190
[8] Lucertini, M.; Perl, Y.; Simeone, B., Most uniform path partitioning and its use in image processing, Discrete Appl. Math., 42, 2, 227-256 (1993) · Zbl 0781.68133 · doi:10.1016/0166-218X(93)90048-S
[9] Möhring, RH; Schilling, H.; Schütz, B.; Wagner, D.; Willhalm, T., Partitioning graphs to speedup Dijkstra’s algorithm, ACM J. Exp. Algorithmics, 11, 2-8 (2006) · Zbl 1140.68420 · doi:10.1145/1187436.1216585
[10] Nakano, S.; Rahman, MS; Nishizeki, T., A linear-time algorithm for four-partitioning four-connected planar graphs, Inf. Process. Lett., 62, 6, 315-322 (1997) · Zbl 1336.05136 · doi:10.1016/S0020-0190(97)00083-5
[11] Przytycka, TM; Apostolico, A.; Guerra, C.; Istrail, S.; Pevzner, PA; Waterman, M., An important connection between network motifs and parsimony models, Research in Computational Molecular Biology, 321-335 (2006), Heidelberg: Springer, Heidelberg · Zbl 1302.92044 · doi:10.1007/11732990_27
[12] Przytycka, TM; Davis, GB; Song, N.; Durand, D., Graph theoretical insights into evolution of multidomain proteins, J. Comput. Biol., 13, 2, 351-363 (2006) · Zbl 1119.92328 · doi:10.1089/cmb.2006.13.351
[13] Rose, DJ; Tarjan, RE; Lueker, GS, Algorithmic aspects of vertex elimination on graphs, SIAM J. Comput., 5, 2, 266-283 (1976) · Zbl 0353.65019 · doi:10.1137/0205021
[14] Suzuki, H.; Takahashi, N.; Nishizeki, T.; Miyano, H.; Ueno, S., An algorithm for tripartitioning 3-connected graphs, J. Inf. Process. Soc. Japan, 31, 5, 584-592 (1990)
[15] Suzuki, H.; Takahashi, N.; Nishizeki, T., A linear algorithm for bipartition of biconnected graphs, Inf. Process. Lett., 33, 5, 227-231 (1990) · Zbl 0696.68074 · doi:10.1016/0020-0190(90)90189-5
[16] Wada, K.; Kawaguchi, K.; van Leeuwen, J., Efficient algorithms for tripartitioning triconnected graphs and 3-edge-connected graphs, Graph-Theoretic Concepts in Computer Science, 132-143 (1994), Heidelberg: Springer, Heidelberg · Zbl 1530.05183 · doi:10.1007/3-540-57899-4_47
[17] Zhou, X.; Wang, H.; Ding, B.; Hu, T.; Shang, S., Balanced connected task allocations for multi-robot systems: an exact flow-based integer program and an approximate tree-based genetic algorithm, Expert Syst. Appl., 116, 10-20 (2019) · doi:10.1016/j.eswa.2018.09.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.