×

When every regular ideal is \(S\)-finite. (English) Zbl 07842195

Let \(R\) be a commutative ring with nonzero identity and \(S\subseteq R\) be a multiplicatively closed subset. An ideal \(I\) of \(R\) is called \(S\)-finite if there exists a finitely generated subideal \(J\subseteq I\) and \(s\in S\) such that \(sI\subseteq J\). Then \(R\) is called an \(S\)-Noetherian ring if every ideal of \(R\) is \(S\)-finite.
In the paper under review the authors introduced and studied the notion of regular \(S\)-Noetherian rings that is rings such that every regular ideal is \(S\)-finite. This notion generalized regular-Noetherian rings (every regular ideal is finitely generated) and \(S\)-Noetherian rings. If \(R\) is an integral domain these two notion are identical. The property of regular \(S\)-Noetherian rings is investigated in particular Pullback constructions that is \(D+M\)-constructions and trivial extension and amalgamated duplication of a ring along an ideal. Several example are given.

MSC:

13A15 Ideals and multiplicative ideal theory in commutative rings
13B99 Commutative ring extensions and related topics
13E15 Commutative rings and modules of finite generation or presentation; number of generators
Full Text: DOI

References:

[1] Alaoui Ismaili, K., Dobbs, D.E., and Mahdou, N., Commutative rings and modules that are Nil_* -coherent or special Nil_*-coherent, J. Algebra Appl. 16 (2017), 1750187. doi: · Zbl 1388.13007
[2] Alaoui Ismaili, K. and Mahdou, N., Coherence in amalgamated algebra along an ideal, Bull. Iranian Math. Soc. 41 (2015), 625-632. · Zbl 1373.13013
[3] Anderson, D.D. and Dumitrescu, T., S-Noetherian rings, Commun. Algebra30 (2002), 4407-4416. doi: · Zbl 1060.13007
[4] Anderson, D.D. and Winders, M., Idealization of a module, J. Commut. Algebra1(1) (2009), 3-56. doi: · Zbl 1194.13002
[5] Bakkari, C., Kabbaj, S., and Mahdou, N., Trivial extensions defined by Prüfer conditions, J. Pure Appl. Algebra214 (2010), 53-60. doi: · Zbl 1175.13008
[6] Bastida, E. and Gilmer, R., Overrings and divisorial ideals of rings of the form D + M, Michigan Math. J. 20 (1973), 79-95. doi: · Zbl 0239.13001
[7] Bennis, D. and El Hajoui, M., On S-coherence, J. Korean Math. Soc. 55(6) (2018), 1499-1512. · Zbl 1405.13035
[8] Brewer, J.W. and Rutter, E.A., D + M constructions with general overrings, Michigan Math. J. 23 (1976), 33-42. doi: · Zbl 0318.13007
[9] Chhiti, M., Jarrar, M., Kabbaj, S., and Mahdou, N., Prüfer-like conditions in the amalgamated duplication of a ring along an ideal, Commun. Algebra43(1) (2015), 249-261. doi: · Zbl 1327.13063
[10] D’Anna, M., A construction of Gorenstein rings, J. Algebra306(6) (2006), 507-519. doi: · Zbl 1120.13022
[11] D’Anna, M., Finocchiaro, C.A., and Fontana, M., Properties of chains of prime ideals in amalgamated algebras along an ideal, J. Pure Applied Algebra214 (2010), 1633-1641. doi: · Zbl 1191.13006
[12] D’Anna, M. and Fontana, M., An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl. 6(3) (2007), 443-459. doi: · Zbl 1126.13002
[13] Dobbs, D.E., El Khalfi, A., and Mahdou, N., Trivial extensions satisfying certain valuation-like properties, Commun. Algebra47(5) (2019), 2060-2077. doi: · Zbl 1423.13065
[14] Dobbs, D.E. and Papick, I.J., When is D + M coherent?Proc. Amer. Math. Soc. 56 (1976), 51-54. · Zbl 0329.13014
[15] Dumitrescu, T., Mahdou, N., and Zahir, Y., Radical factorization for trivial extensions and amalgamated duplication rings, J. Algebra Appl. 20(2) (2021), 2150025. doi: · Zbl 1460.13006
[16] El Khalfaoui, R. and Mahdou, N., The ϕ-Krull dimension of some commutative extensions, Commun. Algebra48(9) (2020), 3800-3810. doi: · Zbl 1451.13051
[17] El Khalfi, A., Kim, H., and Mahdou, N., Amalgamation extension in commutative ring theory : a survey, Moroccan Journal of Algebra and Geometry with Applications1(1) (2022), 139-182.
[18] El Khalfi, A., Mahdou, N., and Zahir, Y., Strongly primary ideals in rings with zero-divisors, Quaestiones Mathematicae44(5) (2021), 569-580. doi: · Zbl 1462.13003
[19] Glaz, S., Commutative Coherent Rings, Lecture Notes in Math., Vol. 1371, Springer-Verlag, Berlin, 1989. · Zbl 0745.13004
[20] Hamed, A. and Hizem, S., S-Noetherian rings of the forms A[X] and A[[X]], Commun. Algebra43 (2015), 3848-3856. doi: · Zbl 1329.13014
[21] Hamed, A. and Hizem, S., Modules satisfying the S-Noetherian property and S-ACCR, Commun. Algebra44 (2016), 1941-1951. doi: · Zbl 1347.13005
[22] Huckaba, J.A., Commutative Rings with Zero Divisors, Dekker, New York, 1988. · Zbl 0637.13001
[23] Issoual, M. and Mahdou, N., Trivial Extensions defined by 2-absorbing-like conditions, J. Algebra Appl. 17(11) (2018), 1850208. doi: · Zbl 1408.13005
[24] Kabbaj, S. and Mahdou, N., Trivial extensions defined by coherent-like conditions, Commun. Algebra32(1) (2004), 3937-3953. doi: · Zbl 1068.13002
[25] Lim, J.W. and Oh, D.Y., S-Noetherian properties on amalgamated algebras along an ideal, J. Pure Appl. Algebra218 (2014), 1075-1080. doi: · Zbl 1282.13009
[26] Lim, J.W. and Oh, D.Y., S-Noetherian properties of composite ring extensions, Commun. Algebra43 (2015), 2820-2829. doi: · Zbl 1329.13001
[27] Kabbour, M., Mahdou, N., and Mimouni, A., Trivial ring extensions defined by arithmetical-like properties, Commun. Algebra41(12) (2013), 4534-4548. doi: · Zbl 1302.13015
[28] Mahdou, N. and Moutui, A.S., Prüfer property in amalgamated algebras along an ideal, Ricerche di Matematica69 (2020), 111-120. doi: · Zbl 1440.13088
[29] Maimani, H. and Yassemi, S., Zero-divisor graphs of amalgamated duplication of a ring along an ideal, J. Pure Appl. Algebra212(1) (2008), 168-174. doi: · Zbl 1149.13001
[30] Zhongkui, L., On S-Noetherian rings, Arch. Math. (Brno)43 (2007), 55-60. · Zbl 1160.16307
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.