×

Structural stability of the financial market model: continuity of superhedging price and model approximation. (English) Zbl 07840832

Summary: The present paper continues the topic of our recent paper in the same journal, aiming to show the role of structural stability in financial modeling. In the context of financial market modeling, structural stability means that a specific “no-arbitrage” property is unaffected by small (with respect to the Pompeiu-Hausdorff metric) perturbations of the model’s dynamics. We formulate, based on our economic interpretation, a new requirement concerning “no arbitrage” properties, which we call the “uncertainty principle”. This principle in the case of no-trading constraints is equivalent to structural stability. We demonstrate that structural stability is essential for a correct model approximation (which is used in our numerical method for superhedging price computation). We also show that structural stability is important for the continuity of superhedging prices and discuss the sufficient conditions for this continuity.

MSC:

91G15 Financial markets
91A80 Applications of game theory
Full Text: DOI

References:

[1] Smirnov, S.N.: Realistic models of financial market and structural stability. J. Math. (2021). doi:10.1155/2021/6651324 · Zbl 1477.91062
[2] Schachermayer, W., The fundamental theorem of asset pricing under proportional transaction costs in finite discrete time, Math. Financ., 14, 1, 19-48 (2004) · Zbl 1119.91046 · doi:10.1111/j.0960-1627.2004.00180.x
[3] Bayraktar, E.; Zhang, Y.; Zhou, Z., A note on the fundamental theorem of asset pricing under model uncertainty, Risks, 2, 4, 425-433 (2014) · doi:10.3390/risks2040425
[4] Ostrovski, V., Stability of no-arbitrage property under model uncertainty, Stat. Probab. Lett., 83, 89-92 (2013) · Zbl 1282.91113 · doi:10.1016/j.spl.2012.08.026
[5] Hou, Z.; Obłój, J., Robust pricing-hedging dualities in continuous time, Finance Stoch., 22, 511-567 (2018) · Zbl 1402.91789 · doi:10.1007/s00780-018-0363-9
[6] Smirnov, SN, A guaranteed deterministic approach to superhedging: no arbitrage properties of the market, Autom. Remote. Control., 82, 172-187 (2021) · Zbl 1460.91276 · doi:10.1134/S0005117921010124
[7] Davis, M.; Hobson, D., The range of traded option prices, Math. Finance, 17, 1-14 (2007) · Zbl 1278.91158 · doi:10.1111/j.1467-9965.2007.00291.x
[8] Acciaio, B.; Beiglböck, M.; Penkner, F.; Schachermayer, W., A model-free version of the fundamental theorem of asset pricing and the super-replication theorem, Math. Financ., 26, 233-251 (2013) · Zbl 1378.91129 · doi:10.1111/mafi.12060
[9] Bouchard, B.; Nutz, M., Arbitrage and duality in nondominated discrete-time models, Ann. Appl. Probab., 25, 823-859 (2015) · Zbl 1322.60045 · doi:10.1214/14-AAP1011
[10] Burzoni, M.; Frittelli, M.; Maggis, M., Universal arbitrage aggregator in discrete-time markets under uncertainty, Finance Stoch., 20, 1-50 (2016) · Zbl 1369.91201 · doi:10.1007/s00780-015-0283-x
[11] Burzoni, M.; Frittelli, M.; Maggis, M., Model-free superhedging duality, Ann. Appl. Probab., 27, 1452-1477 (2017) · Zbl 1370.60004 · doi:10.1214/16-AAP1235
[12] Burzoni, M., Frittelli, M., Hou, Z., Maggis, M., Obłój, J.: Pointwise arbitrage pricing theory in discrete time. Math. Oper. Res. 44, 1034-1057 (2018) · Zbl 1437.90159
[13] Kolokoltsov, VN, Nonexpansive maps and option pricing theory, Kybernetika, 34, 713-724 (1998) · Zbl 1274.91420
[14] Bernhard, P.; Engwerda, JC; Roorda, B., The Interval Market Model in Mathematical Finance: Game-Theoretic Methods (2013), New York: Springer, New York · Zbl 1279.91005 · doi:10.1007/978-0-8176-8388-7
[15] Smirnov, SN, A guaranteed deterministic approach to superhedging: sensitivity of solutions of Bellman-Isaacs equations and numerical methods, Comput. Math. Model., 31, 384-401 (2020) · Zbl 1460.91277 · doi:10.1007/s10598-020-09499-3
[16] Carassus, L.; Obłój, J.; Wiesel, J., The robust superreplication problem: a dynamic approach, SIAM J. Financ. Math., 10, 907-941 (2019) · Zbl 1435.91182 · doi:10.1137/18M1235934
[17] Carassus, L., Obłój, J., Wiesel, J.: Erratum to “The Robust Superreplication Problem: A Dynamic Approach”. SIAM Journal on Financial Mathematics 13, 653-655 (2022) · Zbl 1497.91305
[18] Smirnov, SN, Guaranteed deterministic approach to superhedging: the semicontinuity and continuity properties of solutions of the Bellman-Isaacs equations, Autom. Remote. Control., 82, 2024-2040 (2021) · Zbl 1480.91295 · doi:10.1134/S0005117921110163
[19] Smirnov, SN, A guaranteed deterministic approach to superhedging: financial market model, trading constraints, and the Bellman-Isaacs equations, Autom. Remote. Control., 82, 722-743 (2021) · Zbl 1462.91021 · doi:10.1134/S0005117921040081
[20] Carassus, L.; Vargiolu, T., Super-replication price: It can be OK, ESAIM Proc. Surv., 65, 241-281 (2018)
[21] Smirnov, SN, Geometric criterion for a robust condition of no sure arbitrage with unlimited profit, Mosc. Univ. Comput. Math. Cybern., 44, 146-150 (2020) · Zbl 1452.91300 · doi:10.3103/S0278641920020077
[22] Jacod, J.; Shiryaev, AN, Local martingales and the fundamental asset pricing theorems in the discrete-time case, Finance Stoch., 2, 259-273 (1998) · Zbl 0903.60036 · doi:10.1007/s007800050040
[23] Carassus, L.; Lépinette, E., Pricing without no-arbitrage condition in discrete time, J. Math. Anal. Appl., 505 (2022) · Zbl 1471.91526 · doi:10.1016/j.jmaa.2021.125441
[24] Rockafellar, RT, Convex Analysis (1970), Princeton: Princeton University Press, Princeton · Zbl 0193.18401 · doi:10.1515/9781400873173
[25] Cherif, D.; Lépinette, E., No-arbitrage conditions and pricing from discrete-time to continuous-time strategies, Ann. Finance, 19, 141-168 (2023) · Zbl 1520.91384 · doi:10.1007/s10436-023-00426-1
[26] Gerhold, S.; Krühner, P., Dynamic trading under integer constraints, Finance Stoch., 2018, 22, 919-957 (2018) · Zbl 1416.91347 · doi:10.1007/s00780-018-0369-3
[27] Smirnov, S.N.: The guaranteed deterministic approach to superhedging: Lipschitz properties of solutions of the Bellman-Isaacs equations. In: Frontiers of Dynamics Games: Game Theory and Management, Birkhäuser, St. Petersburg. pp. 267-288 (2019) · Zbl 1427.91281
[28] Smirnov, S.N.: A guaranteed deterministic approach to superhedging: relation between “deterministic” and “stochastic” settings in the case of no trading constraints. Theory Probab. Appl. 67, 548-569 (2023) · Zbl 1512.91154
[29] Smirnov, SN, Structural stability threshold for the condition of robust no deterministic sure arbitrage with unbounded profit, Mosc. Univ. Comput. Math. Cybern., 45, 34-44 (2021) · Zbl 1467.91179 · doi:10.3103/S0278641921010064
[30] Smirnov, SN, A guaranteed deterministic approach to superhedging: structural stability and approximation, Comput. Math. Model., 32, 129-146 (2021) · Zbl 1489.91273 · doi:10.1007/s10598-021-09522-1
[31] Goberna, MA; González, E.; Martínez-Legaz, JE; Todorov, MI, Motzkin decomposition of closed convex sets, J. Math. Anal. Appl., 364, 209-221 (2010) · Zbl 1188.90195 · doi:10.1016/j.jmaa.2009.10.015
[32] Smirnov, SN, Guaranteed deterministic approach to superhedging: mixed strategies and game equilibrium, Autom. Remote. Control., 83, 2019-2036 (2022) · Zbl 1510.91171 · doi:10.1134/S0005117922012013X
[33] Smirnov, S.N.: A note on transition kernels for the most unfavourable mixed strategies of the market. J. Oper. Res. Soc, China (2023). doi:10.1007/s40305-023-00490-4 · Zbl 07840823
[34] Leichtweiß, K., Konvexe Mengen (1979), Berlin Heidelberg: Springer-Verlag, Berlin Heidelberg
[35] Hu, S.; Papageorgiou, N., Handbook of Multivalued Analysis: Theory, Mathematics and Its Applications (1997), Berlin: Springer, Berlin · Zbl 0887.47001 · doi:10.1007/978-1-4615-6359-4
[36] Smirnov, SN, A guaranteed deterministic approach to superhedging: a game equilibrium in the case of no trading constraints, J. Math. Sci., 248, 105-115 (2020) · doi:10.1007/s10958-020-04860-8
[37] Aliprantis, CD; Border, KC, Infinite Dimensional Analysis A Hitchhiker’s Guide (2006), Berlin: Springer-Verlag, Berlin · Zbl 1156.46001
[38] Karlin, S., Extreme points of vector functions, Proc. Am. Math. Soc., 4, 603-610 (1953) · Zbl 0051.29604 · doi:10.1090/S0002-9939-1953-0056668-6
[39] Tulcea, C., Ionescu, T.: Mesures dans les espaces produits. Atti Accad. Naz. Lincei Rend., 7, pp. 208-211 (1949) · Zbl 0035.15203
[40] Föllmer, H., Schied, A.: Stochastic Finance. An Introduction in Discrete Time, 4nd edition, Walter de Gruyter, New York (2016) · Zbl 1343.91001
[41] Engelking, R., General Topology (1989), Berlin: Heldermann, Berlin · Zbl 0684.54001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.