×

The rank of syzygies of canonical curves. (English) Zbl 07840485

Summary: We prove that the linear syzygy spaces of a general canonical curve are spanned by syzygies of minimal rank.

MSC:

14-XX Algebraic geometry
15-XX Linear and multilinear algebra; matrix theory

References:

[1] A. B. Altman and S. L. Kleiman, Compactifying the Picard scheme, Adv. Math. 35 (1980), no. 1, 50-112. · Zbl 0427.14015
[2] A. Andreotti and A. L. Mayer, On period relations for abelian integrals on algebraic curves, Ann. Sc. Norm. Super. Pisa Cl. Sci. (3) 21 (1967), 189-238. · Zbl 0222.14024
[3] M. Aprodu, On the vanishing of higher syzygies of curves, Math. Z. 241 (2002), no. 1, 1-15. · Zbl 1037.14012
[4] M. Aprodu, Remarks on syzygies of 𝑑-gonal curves, Math. Res. Lett. 12 (2005), no. 2-3, 387-400. · Zbl 1084.14032
[5] M. Aprodu and G. Farkas, Koszul cohomology and applications to moduli, Grassmannians, moduli spaces and vector bundles, Clay Math. Proc. 14, American Mathematical Society, Providence (2011), 25-50. · Zbl 1248.14039
[6] M. Aprodu, G. Farkas, Ş. Papadima, C. Raicu and J. Weyman, Koszul modules and Green’s conjecture, Invent. Math. 218 (2019), no. 3, 657-720. · Zbl 1430.14074
[7] M. Aprodu and J. Nagel, Non-vanishing for Koszul cohomology of curves, Comment. Math. Helv. 82 (2007), no. 3, 617-628. · Zbl 1130.14027
[8] M. Aprodu and J. Nagel, Koszul cohomology and algebraic geometry, Univ. Lecture Ser. 52, American Mathematical Society, Providence 2010. · Zbl 1189.14001
[9] E. Arbarello, M. Cornalba and P. A. Griffiths, Geometry of algebraic curves. Vol. II, Grundlehren Math. Wiss. 268, Springer, Heidelberg 2011. · Zbl 1235.14002
[10] E. Arbarello, M. Cornalba, P. A. Griffiths and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren Math. Wiss. 267, Springer, New York 1985. · Zbl 0559.14017
[11] E. Arbarello and J. Harris, Canonical curves and quadrics of rank 4, Compos. Math. 43 (1981), no. 2, 145-179. · Zbl 0494.14011
[12] E. Arbarello and E. Sernesi, Petri’s approach to the study of the ideal associated to a special divisor, Invent. Math. 49 (1978), no. 2, 99-119. · Zbl 0399.14019
[13] U. N. Bhosle and A. J. Parameswaran, Picard bundles and Brill-Noether loci in the compactified Jacobian of a nodal curve, Int. Math. Res. Not. IMRN 2014 (2014), no. 15, 4241-4290. · Zbl 1303.14042
[14] C. Birkar, Topics in algebraic geometry, preprint (2011), https://arxiv.org/abs/1104.5035.
[15] N. Bourbaki, Algebra I. Chapters 1-3, Elem. Math. (Berlin), Springer, Berlin 1998.
[16] F. Catanese, M. Franciosi, K. Hulek and M. Reid, Embeddings of curves and surfaces, Nagoya Math. J. 154 (1999), 185-220. · Zbl 0933.14003
[17] X. Chen, A simple proof that rational curves on K3 are nodal, Math. Ann. 324 (2002), no. 1, 71-104. · Zbl 1039.14019
[18] C. Ciliberto and A. L. Knutsen, On 𝑘-gonal loci in Severi varieties on general K3 surfaces and rational curves on hyperkähler manifolds, J. Math. Pures Appl. (9) 101 (2014), no. 4, 473-494. · Zbl 1291.14049
[19] L. Ein and R. Lazarsfeld, Asymptotic syzygies of algebraic varieties, Invent. Math. 190 (2012), no. 3, 603-646. · Zbl 1262.13018
[20] D. Eisenbud, Green’s conjecture: An orientation for algebraists, Free resolutions in commutative algebra and algebraic geometry (Sundance 1990), Res. Notes Math. 2, Jones and Bartlett, (Boston) (1992), 51-78. · Zbl 0792.14015
[21] D. Eisenbud and S. Goto, Linear free resolutions and minimal multiplicity, J. Algebra 88 (1984), no. 1, 89-133. · Zbl 0531.13015
[22] D. Eisenbud and J. Harris, On varieties of minimal degree (a centennial account), Algebraic geometry, Proc. Sympos. Pure Math. 46, American Mathematical Society, Providence (1987), 3-13. · Zbl 0646.14036
[23] G. Farkas, Progress on syzygies of algebraic curves, Moduli of curves, Lect. Notes Unione Mat. Ital. 21, Springer, Cham (2017), 107-138. · Zbl 1450.14001
[24] G. Farkas and M. Kemeny, The generic Green-Lazarsfeld secant conjecture, Invent. Math. 203 (2016), no. 1, 265-301. · Zbl 1335.14009
[25] G. Farkas and M. Kemeny, Linear syzygies of curves with prescribed gonality, Adv. Math. 356 (2019), Article ID 106810. · Zbl 1423.14213
[26] W. Fulton and R. Lazarsfeld, On the connectedness of degeneracy loci and special divisors, Acta Math. 146 (1981), no. 3-4, 271-283. · Zbl 0469.14018
[27] D. Gieseker, Stable curves and special divisors: Petri’s conjecture, Invent. Math. 66 (1982), no. 2, 251-275. · Zbl 0522.14015
[28] T. L. Gómez, Brill-Noether theory on singular curves and torsion-free sheaves on surfaces, Comm. Anal. Geom. 9 (2001), no. 4, 725-756. · Zbl 1028.14010
[29] H.-C. Graf v. Bothmer, Geometrische syzygien von kanonischen Kurven, Thesis, Universität Bayreuth, 2000. · Zbl 1063.14505
[30] H.-C. Graf v. Bothmer, Geometric syzygies of canonical curves of even genus lying on a K3 surfaces, preprint (2001), https://arxiv.org/abs/math/0108078.
[31] H.-C. Graf v. Bothmer, Generic syzygy schemes, J. Pure Appl. Algebra 208 (2007), no. 3, 867-876. · Zbl 1118.13013
[32] H.-C. Graf v. Bothmer, Scrollar syzygies of general canonical curves with genus \leq 8, Trans. Amer. Math. Soc. 359 (2007), no. 2, 465-488. · Zbl 1117.13013
[33] M. L. Green, The canonical ring of a variety of general type, Duke Math. J. 49 (1982), no. 4, 1087-1113. · Zbl 0607.14005
[34] M. L. Green, Koszul cohomology and the geometry of projective varieties, J. Differential Geom. 19 (1984), no. 1, 125-171. · Zbl 0559.14008
[35] M. L. Green, Quadrics of rank four in the ideal of a canonical curve, Invent. Math. 75 (1984), no. 1, 85-104. · Zbl 0542.14018
[36] P. Griffiths and J. Harris, On the variety of special linear systems on a general algebraic curve, Duke Math. J. 47 (1980), no. 1, 233-272. · Zbl 0446.14011
[37] K. Han, W. Lee, H. Moon and E. Park, Rank 3 quadratic generators of Veronese embeddings, Compos. Math. 157 (2021), no. 9, 2001-2025. · Zbl 1476.13019
[38] J. Harris and D. Mumford, On the Kodaira dimension of the moduli space of curves, Invent. Math. 67 (1982), no. 1, 23-88. · Zbl 0506.14016
[39] R. Hartshorne, Algebraic geometry, Grad. Texts in Math. 52, Springer, New York 1977. · Zbl 0367.14001
[40] R. Hartshorne, Generalized divisors on Gorenstein curves and a theorem of Noether, J. Math. Kyoto Univ. 26 (1986), no. 3, 375-386. · Zbl 0613.14008
[41] D. Huybrechts, Lectures on K3 surfaces, Cambridge Stud. Adv. Math. 158, Cambridge University, Cambridge 2016. · Zbl 1360.14099
[42] D. Huybrechts and M. Lehn, The geometry of moduli spaces of sheaves, Cambridge Math. Libr., Cambridge University, Cambridge 2010. · Zbl 1206.14027
[43] J. L. Kass, Singular curves and their compactified Jacobians, A celebration of algebraic geometry, Clay Math. Proc. 18, American Mathematical Society, Providence (2013), 391-427. · Zbl 1317.14068
[44] M. Kemeny, The moduli of singular curves on K3 surfaces, J. Math. Pures Appl. (9) 104 (2015), no. 5, 882-920. · Zbl 1330.14003
[45] M. Kemeny, Projecting syzygies of curves, Algebr. Geom. 7 (2020), no. 5, 561-580. · Zbl 1448.14028
[46] M. Kemeny, Universal secant bundles and syzygies of canonical curves, Invent. Math. 223 (2021), no. 3, 995-1026. · Zbl 1473.14058
[47] S. L. Kleiman and A. B. Altman, Bertini theorems for hypersurface sections containing a subscheme, Comm. Algebra 7 (1979), no. 8, 775-790. · Zbl 0401.14002
[48] A. L. Knutsen, On 𝑘th-order embeddings of K3 surfaces and Enriques surfaces, Manuscripta Math. 104 (2001), no. 2, 211-237. · Zbl 1017.14015
[49] J. Koh and M. Stillman, Linear syzygies and line bundles on an algebraic curve, J. Algebra 125 (1989), no. 1, 120-132. · Zbl 0708.14002
[50] R. Lazarsfeld, Brill-Noether-Petri without degenerations, J. Differential Geom. 23 (1986), no. 3, 299-307. · Zbl 0608.14026
[51] R. Lazarsfeld, Lectures on linear series, Complex algebraic geometry, IAS/Park City Math. Ser. 3, American Mathematical Society, Providence (1997), 161-219.
[52] A. L. Mayer, Compactification of the variety of moduli of curves, Notes, Institut for Advanced Study, Princeton, 1969/70.
[53] D. Mumford, Further comments on boundary points, Notes, AMS Summer School, Woods Hole, 1964.
[54] D. Mumford, Varieties defined by quadratic equations, Questions on algebraic varieties. Corso C.I.M.E., Ed. Cremonese, Rome (1970), 29-100. · Zbl 0198.25801
[55] K. G. O’Grady, Moduli of sheaves and the Chow group of K3 surfaces, J. Math. Pures Appl. (9) 100 (2013), no. 5, 701-718. · Zbl 1325.14054
[56] I. Peeva, Graded syzygies, Algebr. Appl. 14, Springer, London 2010.
[57] C. J. Rego, The compactified Jacobian, Ann. Sci. Éc. Norm. Supér. (4) 13 (1980), no. 2, 211-223. · Zbl 0478.14024
[58] J. Schicho, F.-O. Schreyer and M. Weimann, Computational aspects of gonal maps and radical parametrization of curves, Appl. Algebra Engrg. Comm. Comput. 24 (2013), no. 5, 313-341. · Zbl 1299.14047
[59] F.-O. Schreyer, Syzygies of canonical curves and special linear series, Math. Ann. 275 (1986), no. 1, 105-137. · Zbl 0578.14002
[60] J. Sidman and G. G. Smith, Linear determinantal equations for all projective schemes, Algebra Number Theory 5 (2011), no. 8, 1041-1061. · Zbl 1250.14002
[61] A. Tannenbaum, Families of curves with nodes on K3 surfaces, Math. Ann. 260 (1982), no. 2, 239-253. · Zbl 0474.14013
[62] C. Voisin, Green’s generic syzygy conjecture for curves of even genus lying on a K3 surface, J. Eur. Math. Soc. (JEMS) 4 (2002), no. 4, 363-404. · Zbl 1080.14525
[63] C. Voisin, Green’s canonical syzygy conjecture for generic curves of odd genus, Compos. Math. 141 (2005), no. 5, 1163-1190. · Zbl 1083.14038
[64] Y. Wei, Generic Green’s conjecture and generic geometric syzygy conjecture in positive characteristic, preprint (2021), https://arxiv.org/abs/2109.12187.
[65] J. Weyman, Resolutions of the exterior and symmetric powers of a module, J. Algebra 58 (1979), no. 2, 333-341. · Zbl 0444.18010
[66] J. Weyman, Cohomology of vector bundles and syzygies, Cambridge Tracts in Math. 149, Cambridge University, Cambridge 2003. · Zbl 1075.13007
[67] The Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu, 2019.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.