×

A note on a Hecke type integral for \(\mathrm{Sp}(2n) \times \mathrm{GL}(1)\). (English) Zbl 07838078

Let \(\mathbb{A}\) be the ring of adeles over a number field \(F\), \(\pi\) be an irreducible generic cuspidal automorphic representation of \(\operatorname{Sp}_{2n}(\mathbb{A})\), and \(\chi:F^\times\backslash\mathbb{A}_F^{\times} \to \mathbb{C}^\times\) be a unitary idele class character.
In this paper, the author presents an integral representation of Hecke type for the twisted standard \(L\)-function \(L(s, \pi \times \chi)\) of \(\operatorname{Sp}_{2n}(\mathbb{A}) \times \operatorname{GL}_1(\mathbb{A})\) of degree \(2n+1\).
The main computation in this paper involves the unfolding of the global integrals. The non-vanishing of the local integrals and their computation in the unramified case are deduced from [D. Ginzburg et al., Bull. Soc. Math. Fr. 126, No. 2, 181–244 (1998; Zbl 0928.11026)].

MSC:

11F70 Representation-theoretic methods; automorphic representations over local and global fields
22E55 Representations of Lie and linear algebraic groups over global fields and adèle rings

Citations:

Zbl 0928.11026

References:

[1] Bump, Daniel, The Rankin-Selberg method: a survey, Number theory, trace formulas and discrete groups (Oslo, 1987), 49-109, Academic Press, Boston, MA (1989). · Zbl 0668.10034
[2] Casselman, W. and Shalika, J., The unramified principal series of p-adic groups. II. The Whittaker function, Compositio Math., 41, no. 2 (1980) 207-231. · Zbl 0472.22005
[3] Cogdell, James W., Lectures on L-functions, converse theorems, and functoriality for GL n , Lectures on automorphic L-functions, Fields Inst. Monogr., Amer. Math. Soc., Providence, RI, Vol. 20 (2004) 1-96. · Zbl 1066.11021
[4] Hecke, E., Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung, Math. Ann., 112, no. 1 (1936) 664-699. · Zbl 0014.01601
[5] Ginzburg, David, L-functions for SO n × GL k , J. Reine Angew. Math., 405 (1990) 156-180. · Zbl 0684.22009
[6] David Ginzburg, Stephen Rallis and David Soudry, Periods, poles of L-functions and symplectic-orthogonal theta lifts, J. Reine Angew. Math., 487 85-114 (1997). · Zbl 0928.11025
[7] David Ginzburg, Stephen Rallis and David Soudry, L-functions for symplectic groups, Bull. Soc. Math. France, 126, no. 2 (1998) 181-244. · Zbl 0928.11026
[8] Jacquet, H. and Langlands, R. P., Automorphic forms on GL(2), Lecture Notes in Mathematics, Springer-Verlag, Berlin-New York, Vol. 114 (1970). · Zbl 0236.12010
[9] Jacquet, H., Piatetski-Shapiro, I. and Shalika, J., Automorphic forms on GL(3). I, Ann. of Math. (2), 109, no. 1 (1979) 169-212. · Zbl 0401.10037
[10] Jacquet, H., Piatetski-Shapiro, I. and Shalika, J., Automorphic forms on GL(3). II, Ann. of Math. (2), 109, no. 2 (1979) 213-258. · Zbl 0401.10037
[11] Jacquet, H., Piatetski-Shapiro, I. and Shalika, J., Rankin-Selberg convolutions, Amer. J. Math., 105, no. 2 (1983) 367-464. · Zbl 0525.22018
[12] Jacquet, H. and Shalika, J. A., On Euler products and the classification of automorphic representations. I, Amer. J. Math., 103, no. 3 (1981) 499-558. · Zbl 0473.12008
[13] Jacquet, H. and Shalika, J. A., On Euler products and the classification of automorphic representations. II, Amer. J. Math., 103, no. 4 (1981) 777-815. · Zbl 0491.10020
[14] Novodvorsky, Mark E., Automorphic L-functions for symplectic group GSp(4), Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, 87-95, Amer. Math. Soc., Providence, R.I., (1979). · Zbl 0408.12013
[15] Shalika, J. A., The multiplicity one theorem for GL n , Ann. of Math. (2), Vol. 100 (1974) 171-193. · Zbl 0316.12010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.