×

Cobordism and bubbles of anything in the string landscape. (English) Zbl 07837501

Summary: We study bubble of nothing decays and their reverse processes, the creation of vacua through ‘bubbles of something’, in models of the Universe based on string theory. From the four-dimensional perspective, the corresponding gravitational instantons contain an end-of-the-world (ETW) boundary or brane, realized by the internal manifold shrinking to zero size. The existence of such ETW branes is predicted by the Cobordism Conjecture. We develop the 4d EFT description of such boundaries at three levels: first, by generalizing the Witten bubble through an additional defect. Second, by replacing the compact \(S^1\) with a Calabi-Yau orientifold and allowing it to shrink and disappear through a postulated defect. Third, we describe an ETW brane construction for type IIB Calabi-Yau orientifold compactifications with O3/O7 planes through an appropriate additional O5 orientifolding. Our 4d EFT formalism allows us to compute the decay/creation rates for bubbles of anything depending on two parameters: the size of the relevant defect and its tension a.k.a. the induced (generalized) deficit angle.

MSC:

81-XX Quantum theory

References:

[1] S.R. Coleman and F. De Luccia, Gravitational Effects on and of Vacuum Decay, Phys. Rev. D21 (1980) 3305 [INSPIRE].
[2] S.W. Hawking and I.G. Moss, Supercooled Phase Transitions in the Very Early Universe, Phys. Lett. B110 (1982) 35 [INSPIRE].
[3] E. Witten, Instability of the Kaluza-Klein Vacuum, Nucl. Phys. B195 (1982) 481 [INSPIRE]. · Zbl 0900.53036
[4] Blanco-Pillado, JJ; Shlaer, B., Bubbles of Nothing in Flux Compactifications, Phys. Rev. D, 82, (2010) · doi:10.1103/PhysRevD.82.086015
[5] Blanco-Pillado, JJ; Shlaer, B.; Sousa, K.; Urrestilla, J., Bubbles of Nothing and Supersymmetric Compactifications, JCAP, 10, 002, (2016) · doi:10.1088/1475-7516/2016/10/002
[6] Brown, AR; Dahlen, A., Bubbles of Nothing and the Fastest Decay in the Landscape, Phys. Rev. D, 84, (2011) · doi:10.1103/PhysRevD.84.043518
[7] Brown, AR; Dahlen, A., On ‘nothing’ as an infinitely negatively curved spacetime, Phys. Rev. D, 85, (2012) · doi:10.1103/PhysRevD.85.104026
[8] Blanco-Pillado, JJ; Ramadhan, HS; Shlaer, B., Decay of flux vacua to nothing, JCAP, 10, 029, (2010) · doi:10.1088/1475-7516/2010/10/029
[9] Dibitetto, G.; Petri, N.; Schillo, M., Nothing really matters, JHEP, 08, 040, (2020) · Zbl 1454.81222 · doi:10.1007/JHEP08(2020)040
[10] Draper, P.; Garcia Garcia, I.; Lillard, B., De Sitter decays to infinity, JHEP, 12, 154, (2021) · Zbl 1521.83180 · doi:10.1007/JHEP12(2021)154
[11] Draper, P.; Garcia, IG; Lillard, B., Bubble of nothing decays of unstable theories, Phys. Rev. D, 104, L121701, (2021) · doi:10.1103/PhysRevD.104.L121701
[12] Draper, P.; Lillard, B.; Skye, C., Neutralizing topological obstructions to bubbles of nothing, JHEP, 10, 049, (2023) · Zbl 07774654 · doi:10.1007/JHEP10(2023)049
[13] D. Brill and G.T. Horowitz, Negative energy in string theory, Phys. Lett. B262 (1991) 437 [INSPIRE].
[14] Fabinger, M.; Horava, P., Casimir effect between world branes in heterotic M theory, Nucl. Phys. B, 580, 243, (2000) · Zbl 1071.81562 · doi:10.1016/S0550-3213(00)00255-8
[15] Horowitz, GT; Orgera, J.; Polchinski, J., Nonperturbative Instability of AdS_5 × S^5/Z(k), Phys. Rev. D, 77, (2008) · doi:10.1103/PhysRevD.77.024004
[16] Ooguri, H.; Spodyneiko, L., New Kaluza-Klein instantons and the decay of AdS vacua, Phys. Rev. D, 96, (2017) · doi:10.1103/PhysRevD.96.026016
[17] B.S. Acharya, Supersymmetry, Ricci Flat Manifolds and the String Landscape, JHEP08 (2020) 128 [arXiv:1906.06886] [INSPIRE]. · Zbl 1454.81210
[18] García Etxebarria, I.; Montero, M.; Sousa, K.; Valenzuela, I., Nothing is certain in string compactifications, JHEP, 12, 032, (2020) · Zbl 1457.83072 · doi:10.1007/JHEP12(2020)032
[19] Bomans, P.; Cassani, D.; Dibitetto, G.; Petri, N., Bubble instability of mIIA on AdS_4 × S^6, SciPost Phys., 12, 099, (2022) · doi:10.21468/SciPostPhys.12.3.099
[20] Blanco-Pillado, JJ; Ramadhan, HS; Shlaer, B., Bubbles from Nothing, JCAP, 01, 045, (2012) · doi:10.1088/1475-7516/2012/01/045
[21] J.B. Hartle and S.W. Hawking, Wave Function of the Universe, Phys. Rev. D28 (1983) 2960 [INSPIRE]. · Zbl 1370.83118
[22] A.D. Linde, Quantum Creation of the Inflationary Universe, Lett. Nuovo Cim.39 (1984) 401 [INSPIRE].
[23] A. Vilenkin, Quantum Creation of Universes, Phys. Rev. D30 (1984) 509 [INSPIRE].
[24] Hawking, SW; Turok, N., Open inflation without false vacua, Phys. Lett. B, 425, 25, (1998) · doi:10.1016/S0370-2693(98)00234-2
[25] Turok, N.; Hawking, SW, Open inflation, the four form and the cosmological constant, Phys. Lett. B, 432, 271, (1998) · doi:10.1016/S0370-2693(98)00651-0
[26] J. Garriga, Smooth ‘creation’ of an open universe in five-dimensions, hep-th/9804106 [INSPIRE].
[27] Garriga, J., Open inflation and the singular boundary, Phys. Rev. D, 61, (2000) · doi:10.1103/PhysRevD.61.047301
[28] Bousso, R.; Chamblin, A., Open inflation from nonsingular instantons: Wrapping the universe with a membrane, Phys. Rev. D, 59, (1999) · doi:10.1103/PhysRevD.59.063504
[29] S. Cespedes, S. de Alwis, F. Muia and F. Quevedo, Quantum Transitions, Detailed Balance, Black Holes and Nothingness, arXiv:2307.13614 [INSPIRE].
[30] Klebanov, IR; Strassler, MJ, Supergravity and a confining gauge theory: Duality cascades and chi SB resolution of naked singularities, JHEP, 08, 052, (2000) · Zbl 0986.83041 · doi:10.1088/1126-6708/2000/08/052
[31] Brummer, F.; Hebecker, A.; Trincherini, E., The throat as a Randall-Sundrum model with Goldberger-Wise stabilization, Nucl. Phys. B, 738, 283, (2006) · Zbl 1109.83311 · doi:10.1016/j.nuclphysb.2006.01.011
[32] L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett.83 (1999) 3370 [hep-ph/9905221] [INSPIRE]. · Zbl 0946.81063
[33] J. McNamara and C. Vafa, Cobordism Classes and the Swampland, arXiv:1909.10355 [INSPIRE].
[34] M. Montero and C. Vafa, Cobordism Conjecture, Anomalies, and the String Lamppost Principle, JHEP01 (2021) 063 [arXiv:2008.11729] [INSPIRE]. · Zbl 1459.83070
[35] Dierigl, M.; Heckman, JJ; Montero, M.; Torres, E., IIB string theory explored: Reflection 7-branes, Phys. Rev. D, 107, (2023) · doi:10.1103/PhysRevD.107.086015
[36] A. Debray, M. Dierigl, J.J. Heckman and M. Montero, The Chronicles of IIBordia: Dualities, Bordisms, and the Swampland, arXiv:2302.00007 [INSPIRE].
[37] Buratti, G.; Calderón-Infante, J.; Delgado, M.; Uranga, AM, Dynamical Cobordism and Swampland Distance Conjectures, JHEP, 10, 037, (2021) · Zbl 1476.83153 · doi:10.1007/JHEP10(2021)037
[38] Buratti, G.; Delgado, M.; Uranga, AM, Dynamical tadpoles, stringy cobordism, and the SM from spontaneous compactification, JHEP, 06, 170, (2021) · doi:10.1007/JHEP06(2021)170
[39] Angius, R., At the end of the world: Local Dynamical Cobordism, JHEP, 06, 142, (2022) · Zbl 1522.81307 · doi:10.1007/JHEP06(2022)142
[40] Angius, R.; Delgado, M.; Uranga, AM, Dynamical Cobordism and the beginning of time: supercritical strings and tachyon condensation, JHEP, 08, 285, (2022) · Zbl 1522.81308 · doi:10.1007/JHEP08(2022)285
[41] Andriot, D.; Carqueville, N.; Cribiori, N., Looking for structure in the cobordism conjecture, SciPost Phys., 13, 071, (2022) · doi:10.21468/SciPostPhys.13.3.071
[42] Blumenhagen, R.; Cribiori, N.; Kneissl, C.; Makridou, A., Dimensional Reduction of Cobordism and K-theory, JHEP, 03, 181, (2023) · Zbl 07690745 · doi:10.1007/JHEP03(2023)181
[43] Blumenhagen, R.; Cribiori, N.; Kneissl, C.; Makridou, A., Dynamical cobordism of a domain wall and its companion defect 7-brane, JHEP, 08, 204, (2022) · Zbl 1522.81324 · doi:10.1007/JHEP08(2022)204
[44] Blumenhagen, R.; Kneissl, C.; Wang, C., Dynamical Cobordism Conjecture: solutions for end-of-the-world branes, JHEP, 05, 123, (2023) · Zbl 07701938 · doi:10.1007/JHEP05(2023)123
[45] Dine, M.; Fox, PJ; Gorbatov, E., Catastrophic decays of compactified space-times, JHEP, 09, 037, (2004) · doi:10.1088/1126-6708/2004/09/037
[46] Denef, F.; Douglas, MR, Distributions of flux vacua, JHEP, 05, 072, (2004) · doi:10.1088/1126-6708/2004/05/072
[47] Kachru, S.; Kallosh, R.; Linde, AD; Trivedi, SP, De Sitter vacua in string theory, Phys. Rev. D, 68, (2003) · Zbl 1244.83036 · doi:10.1103/PhysRevD.68.046005
[48] Balasubramanian, V.; Berglund, P.; Conlon, JP; Quevedo, F., Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP, 03, 007, (2005) · doi:10.1088/1126-6708/2005/03/007
[49] Conlon, JP; Quevedo, F.; Suruliz, K., Large-volume flux compactifications: Moduli spectrum and D3/D7 soft supersymmetry breaking, JHEP, 08, 007, (2005) · doi:10.1088/1126-6708/2005/08/007
[50] Kachru, S.; Pearson, J.; Verlinde, HL, Brane / flux annihilation and the string dual of a nonsupersymmetric field theory, JHEP, 06, 021, (2002) · doi:10.1088/1126-6708/2002/06/021
[51] Freivogel, B.; Lippert, M., Evidence for a bound on the lifetime of de Sitter space, JHEP, 12, 096, (2008) · Zbl 1329.83210 · doi:10.1088/1126-6708/2008/12/096
[52] S. de Alwis, R. Gupta, E. Hatefi and F. Quevedo, Stability, Tunneling and Flux Changing de Sitter Transitions in the Large Volume String Scenario, JHEP11 (2013) 179 [arXiv:1308.1222] [INSPIRE].
[53] S.R. Coleman, V. Glaser and A. Martin, Action Minima Among Solutions to a Class of Euclidean Scalar Field Equations, Commun. Math. Phys.58 (1978) 211 [INSPIRE].
[54] D. Garfinkle, General Relativistic Strings, Phys. Rev. D32 (1985) 1323 [INSPIRE].
[55] A. Vilenkin, Cosmic Strings and Domain Walls, Phys. Rept.121 (1985) 263 [INSPIRE]. · Zbl 0966.83541
[56] Takayanagi, T., Holographic Dual of BCFT, Phys. Rev. Lett., 107, (2011) · doi:10.1103/PhysRevLett.107.101602
[57] Fujita, M.; Takayanagi, T.; Tonni, E., Aspects of AdS/BCFT, JHEP, 11, 043, (2011) · Zbl 1306.81152 · doi:10.1007/JHEP11(2011)043
[58] E. Witten, A Simple Proof of the Positive Energy Theorem, Commun. Math. Phys.80 (1981) 381 [INSPIRE]. · Zbl 1051.83532
[59] Dai, X-Z, A positive mass theorem for spaces with asymptotic SUSY compactification, Commun. Math. Phys., 244, 335, (2004) · Zbl 1075.83013 · doi:10.1007/s00220-003-0986-2
[60] X.-Z. Dai, A note on positive energy theorem for spaces with asymptotic SUSY compactification, J. Math. Phys.46 (2005) 042505 [math-ph/0406006] [INSPIRE]. · Zbl 1067.83012
[61] Giri, S.; Martucci, L.; Tomasiello, A., On the stability of string theory vacua, JHEP, 04, 054, (2022) · Zbl 1522.81626 · doi:10.1007/JHEP04(2022)054
[62] Garriga, J.; Schwartz-Perlov, D.; Vilenkin, A.; Winitzki, S., Probabilities in the inflationary multiverse, JCAP, 01, 017, (2006) · Zbl 1236.83021 · doi:10.1088/1475-7516/2006/01/017
[63] De Simone, A.; Guth, AH; Salem, MP; Vilenkin, A., Predicting the cosmological constant with the scale-factor cutoff measure, Phys. Rev. D, 78, (2008) · doi:10.1103/PhysRevD.78.063520
[64] Garriga, J.; Vilenkin, A., Watchers of the multiverse, JCAP, 05, 037, (2013) · doi:10.1088/1475-7516/2013/05/037
[65] Friedrich, B., A local Wheeler-DeWitt measure for the string landscape, Nucl. Phys. B, 992, (2023) · Zbl 1523.83077 · doi:10.1016/j.nuclphysb.2023.116230
[66] Feldbrugge, J.; Lehners, J-L; Turok, N., No smooth beginning for spacetime, Phys. Rev. Lett., 119, (2017) · doi:10.1103/PhysRevLett.119.171301
[67] Feldbrugge, J.; Lehners, J-L; Turok, N., No rescue for the no boundary proposal: Pointers to the future of quantum cosmology, Phys. Rev. D, 97, (2018) · doi:10.1103/PhysRevD.97.023509
[68] Feldbrugge, J.; Lehners, J-L; Turok, N., Inconsistencies of the New No-Boundary Proposal, Universe, 4, 100, (2018) · doi:10.3390/universe4100100
[69] Vilenkin, A.; Yamada, M., Tunneling wave function of the universe, Phys. Rev. D, 98, (2018) · doi:10.1103/PhysRevD.98.066003
[70] Vilenkin, A.; Yamada, M., Tunneling wave function of the universe II: the backreaction problem, Phys. Rev. D, 99, (2019) · doi:10.1103/PhysRevD.99.066010
[71] Giddings, SB; Kachru, S.; Polchinski, J., Hierarchies from fluxes in string compactifications, Phys. Rev. D, 66, (2002) · doi:10.1103/PhysRevD.66.106006
[72] Strominger, A.; Yau, S-T; Zaslow, E., Mirror symmetry is T duality, Nucl. Phys. B, 479, 243, (1996) · Zbl 0896.14024 · doi:10.1016/0550-3213(96)00434-8
[73] Cvetic, M.; Griffies, S.; Rey, S-J, Static domain walls in N = 1 supergravity, Nucl. Phys. B, 381, 301, (1992) · doi:10.1016/0550-3213(92)90649-V
[74] Cvetic, M.; Soleng, HH, Supergravity domain walls, Phys. Rept., 282, 159, (1997) · doi:10.1016/S0370-1573(96)00035-X
[75] Ceresole, A., Domain walls, near-BPS bubbles, and probabilities in the landscape, Phys. Rev. D, 74, (2006) · doi:10.1103/PhysRevD.74.086010
[76] Bagger, J.; Belyaev, DV, Supersymmetric branes with (almost) arbitrary tensions, Phys. Rev. D, 67, (2003) · doi:10.1103/PhysRevD.67.025004
[77] Gautason, FF; Schillo, M.; Van Riet, T.; Williams, M., Remarks on scale separation in flux vacua, JHEP, 03, 061, (2016) · Zbl 1388.83618 · doi:10.1007/JHEP03(2016)061
[78] Gautason, FF; Van Hemelryck, V.; Van Riet, T., The Tension between 10D Supergravity and dS Uplifts, Fortsch. Phys., 67, 1800091, (2019) · Zbl 1535.83125 · doi:10.1002/prop.201800091
[79] Lüst, D.; Palti, E.; Vafa, C., AdS and the Swampland, Phys. Lett. B, 797, (2019) · Zbl 1427.81108 · doi:10.1016/j.physletb.2019.134867
[80] Westphal, A., Lifetime of Stringy de Sitter Vacua, JHEP, 01, 012, (2008) · doi:10.1088/1126-6708/2008/01/012
[81] Bena, I.; Dudas, E.; Graña, M.; Lüst, S., Uplifting Runaways, Fortsch. Phys., 67, 1800100, (2019) · Zbl 1535.83123 · doi:10.1002/prop.201800100
[82] Blumenhagen, R.; Kläwer, D.; Schlechter, L., Swampland Variations on a Theme by KKLT, JHEP, 05, 152, (2019) · Zbl 1416.83112 · doi:10.1007/JHEP05(2019)152
[83] Lüst, S.; Randall, L., Effective Theory of Warped Compactifications and the Implications for KKLT, Fortsch. Phys., 70, 2200103, (2022) · Zbl 1543.81176 · doi:10.1002/prop.202200103
[84] Carta, F.; Moritz, J.; Westphal, A., Gaugino condensation and small uplifts in KKLT, JHEP, 08, 141, (2019) · doi:10.1007/JHEP08(2019)141
[85] Gao, X.; Hebecker, A.; Junghans, D., Control issues of KKLT, Fortsch. Phys., 68, 2000089, (2020) · Zbl 1537.81174 · doi:10.1002/prop.202000089
[86] Junghans, D., LVS de Sitter vacua are probably in the swampland, Nucl. Phys. B, 990, (2023) · Zbl 1522.83337 · doi:10.1016/j.nuclphysb.2023.116179
[87] Gao, X.; Hebecker, A.; Schreyer, S.; Venken, G., The LVS parametric tadpole constraint, JHEP, 07, 056, (2022) · Zbl 1522.81360 · doi:10.1007/JHEP07(2022)056
[88] Hebecker, A.; Schreyer, S.; Venken, G., Curvature corrections to KPV: do we need deep throats?, JHEP, 10, 166, (2022) · Zbl 1534.81115 · doi:10.1007/JHEP10(2022)166
[89] Schreyer, S.; Venken, G., α’ corrections to KPV: an uplifting story, JHEP, 07, 235, (2023) · Zbl 07744380 · doi:10.1007/JHEP07(2023)235
[90] Feldbrugge, J.; Lehners, J-L; Turok, N., Lorentzian Quantum Cosmology, Phys. Rev. D, 95, (2017) · doi:10.1103/PhysRevD.95.103508
[91] Martucci, L.; Smyth, P., Supersymmetric D-branes and calibrations on general N = 1 backgrounds, JHEP, 11, 048, (2005) · doi:10.1088/1126-6708/2005/11/048
[92] A. Tomasiello, Geometry of String Theory Compactifications, Cambridge University Press (2022) [doi:10.1017/9781108635745] [INSPIRE]. · Zbl 1510.83081
[93] Eckerle, K., A unified system for Coleman-De Luccia transitions, Annals Phys., 424, (2021) · Zbl 1453.83008 · doi:10.1016/j.aop.2020.168362
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.