×

Cosmological phase transitions and the swampland. (English) Zbl 07837488

Summary: I consider the Festina Lente Swampland bound and argue taking thermal effects, as for instance occur during reheating, into account significantly strengthens the implications of this bound. I argue that the confinement scale should be higher than a scale proportional to the vacuum energy, while Festina Lente without thermal effects only bounds the confinement scale to be above the Hubble scale. For Higgsing of nonabelian gauge fields, I find that the magnitude of the Higgs mass should be heavier than a bound proportional to the Electroweak scale (or generally the scale set by the Higgs VEV). The measured values of the Higgs in the SM satisfy the bound. A way to avoid the bound being violated during inflation is to have a large number of species becoming light. If one wants the inflationary scale to lie below the species scale in this case, this bounds the inflationary scale to be \(\ll 10^5\) GeV. These bounds have phenomenological implications for BSM physics such as GUTs, suggesting for example a weak or absent gravitational wave signature from the GUT Higgsing phase transition.

MSC:

81-XX Quantum theory

References:

[1] Montero, M.; Van Riet, T.; Venken, G., Festina Lente: EFT Constraints from Charged Black Hole Evaporation in de Sitter, JHEP, 01, 039, (2020) · Zbl 1434.83070 · doi:10.1007/JHEP01(2020)039
[2] Montero, M.; Vafa, C.; Van Riet, T.; Venken, G., The FL bound and its phenomenological implications, JHEP, 10, 009, (2021) · Zbl 1476.83161 · doi:10.1007/JHEP10(2021)009
[3] G. Dall’Agata, M. Emelin, F. Farakos and M. Morittu, The unbearable lightness of charged gravitini, JHEP10 (2021) 076 [arXiv:2108.04254] [INSPIRE]. · Zbl 1476.83043
[4] Gonzalo, E.; Ibáñez, LE; Valenzuela, I., Swampland constraints on neutrino masses, JHEP, 02, 088, (2022) · Zbl 1522.83335 · doi:10.1007/JHEP02(2022)088
[5] Lee, SM, Festina-Lente bound on Higgs vacuum structure and inflation, JHEP, 02, 100, (2022) · doi:10.1007/JHEP02(2022)100
[6] N. Cribiori, De Sitter, gravitino mass and the swampland, PoSCORFU2021 (2022) 200 [arXiv:2203.15449] [INSPIRE].
[7] K. Ban et al., Phenomenological implications on a hidden sector from the festina lente bound, PTEP2023 (2023) 013B04 [arXiv:2206.00890] [INSPIRE].
[8] Guidetti, V.; Righi, N.; Venken, G.; Westphal, A., Axionic Festina Lente, JHEP, 01, 114, (2023) · Zbl 1540.83136 · doi:10.1007/JHEP01(2023)114
[9] Montero, M.; Muñoz, JB; Obied, G., Swampland bounds on dark sectors, JHEP, 11, 121, (2022) · doi:10.1007/JHEP11(2022)121
[10] Mishra, RK, Confinement in de Sitter space and the swampland, JHEP, 01, 002, (2023) · Zbl 1540.83123 · doi:10.1007/JHEP01(2023)002
[11] A. Mohseni and M. Torabian, Higgs in nilpotent supergravity: Vacuum energy and Festina Lente, Phys. Lett. B844 (2023) 138102 [arXiv:2207.13593] [INSPIRE]. · Zbl 1533.83110
[12] I. Dalianis, F. Farakos and A. Kehagias, Is gauge mediation in the swampland?, Phys. Lett. B844 (2023) 138077 [arXiv:2305.17089] [INSPIRE]. · Zbl 1531.81099
[13] A. Mohseni and M. Torabian, Confinement from Distance in Metric Space and its Relation to Cosmological Constant, arXiv:2310.17000 [INSPIRE].
[14] Graña, M.; Herráez, A., The Swampland Conjectures: A Bridge from Quantum Gravity to Particle Physics, Universe, 7, 273, (2021) · doi:10.3390/universe7080273
[15] Nariai, H., On some static solutions of Einstein’s gravitational field equations in a spherically symmetric case, Sci. Rep. Tohoku Univ. Eighth Ser., 34, 160, (1950)
[16] Romans, LJ, Supersymmetric, cold and lukewarm black holes in cosmological Einstein-Maxwell theory, Nucl. Phys. B, 383, 395, (1992) · doi:10.1016/0550-3213(92)90684-4
[17] Dvali, G., Black Holes and Large N Species Solution to the Hierarchy Problem, Fortsch. Phys., 58, 528, (2010) · Zbl 1196.81258 · doi:10.1002/prop.201000009
[18] Dvali, G.; Lüst, D., Evaporation of Microscopic Black Holes in String Theory and the Bound on Species, Fortsch. Phys., 58, 505, (2010) · Zbl 1208.81158 · doi:10.1002/prop.201000008
[19] G. Dvali and C. Gomez, Species and Strings, arXiv:1004.3744 [INSPIRE].
[20] Dvali, G.; Gomez, C.; Lüst, D., Black Hole Quantum Mechanics in the Presence of Species, Fortsch. Phys., 61, 768, (2013) · Zbl 1338.83072 · doi:10.1002/prop.201300002
[21] V. Mukhanov, Physical Foundations of Cosmology, Cambridge University Press, Oxford (2005) [doi:10.1017/CBO9780511790553] [INSPIRE]. · Zbl 1095.83002
[22] Kirzhnits, DA; Linde, AD, Macroscopic Consequences of the Weinberg Model, Phys. Lett. B, 42, 471, (1972) · doi:10.1016/0370-2693(72)90109-8
[23] L. Dolan and R. Jackiw, Symmetry Behavior at Finite Temperature, Phys. Rev. D9 (1974) 3320 [INSPIRE].
[24] S. Weinberg, Gauge and Global Symmetries at High Temperature, Phys. Rev. D9 (1974) 3357 [INSPIRE].
[25] Particle Data Group collaboration, Review of Particle Physics, PTEP2022 (2022) 083C01 [INSPIRE].
[26] M. D’Onofrio and K. Rummukainen, Standard model cross-over on the lattice, Phys. Rev. D93 (2016) 025003 [arXiv:1508.07161] [INSPIRE].
[27] S.K. Garg and C. Krishnan, Bounds on Slow Roll and the de Sitter Swampland, JHEP11 (2019) 075 [arXiv:1807.05193] [INSPIRE].
[28] Ooguri, H.; Palti, E.; Shiu, G.; Vafa, C., Distance and de Sitter Conjectures on the Swampland, Phys. Lett. B, 788, 180, (2019) · doi:10.1016/j.physletb.2018.11.018
[29] Ooguri, H.; Vafa, C., On the Geometry of the String Landscape and the Swampland, Nucl. Phys. B, 766, 21, (2007) · Zbl 1117.81117 · doi:10.1016/j.nuclphysb.2006.10.033
[30] D. Lüst, E. Palti and C. Vafa, AdS and the Swampland, Phys. Lett. B797 (2019) 134867 [arXiv:1906.05225] [INSPIRE]. · Zbl 1427.81108
[31] G. German, G.G. Ross and S. Sarkar, Low scale inflation, Nucl. Phys. B608 (2001) 423 [hep-ph/0103243] [INSPIRE].
[32] Rubio, J., Higgs inflation, Front. Astron. Space Sci., 5, 50, (2019) · doi:10.3389/fspas.2018.00050
[33] Klebanov, IR; Tseytlin, AA, Gravity duals of supersymmetric SU(N) × SU(N + M) gauge theories, Nucl. Phys. B, 578, 123, (2000) · Zbl 0976.81109 · doi:10.1016/S0550-3213(00)00206-6
[34] Klebanov, IR; Strassler, MJ, Supergravity and a confining gauge theory: Duality cascades and χSB resolution of naked singularities, JHEP, 08, 052, (2000) · Zbl 0986.83041 · doi:10.1088/1126-6708/2000/08/052
[35] Kachru, S.; Pearson, J.; Verlinde, HL, Brane / flux annihilation and the string dual of a nonsupersymmetric field theory, JHEP, 06, 021, (2002) · doi:10.1088/1126-6708/2002/06/021
[36] Michel, B., Remarks on brane and antibrane dynamics, JHEP, 09, 021, (2015) · Zbl 1388.81586 · doi:10.1007/JHEP09(2015)021
[37] J. Polchinski, Brane/antibrane dynamics and KKLT stability, arXiv:1509.05710 [INSPIRE].
[38] Bena, I.; Graña, M.; Kuperstein, S.; Massai, S., Giant Tachyons in the Landscape, JHEP, 02, 146, (2015) · Zbl 1388.83637 · doi:10.1007/JHEP02(2015)146
[39] Cohen-Maldonado, D.; Diaz, J.; van Riet, T.; Vercnocke, B., Observations on fluxes near anti-branes, JHEP, 01, 126, (2016) · Zbl 1388.81507 · doi:10.1007/JHEP01(2016)126
[40] Bena, I.; Blåbäck, J.; Turton, D., Loop corrections to the antibrane potential, JHEP, 07, 132, (2016) · Zbl 1390.81687 · doi:10.1007/JHEP07(2016)132
[41] Cohen-Maldonado, D.; Diaz, J.; Gautason, FF, Polarised antibranes from Smarr relations, JHEP, 05, 175, (2016) · Zbl 1388.81506 · doi:10.1007/JHEP05(2016)175
[42] J. Armas et al., Meta-stable non-extremal anti-branes, Phys. Rev. Lett.122 (2019) 181601 [arXiv:1812.01067] [INSPIRE].
[43] Armas, J.; Nguyen, N.; Niarchos, V.; Obers, NA, Thermal transitions of metastable M-branes, JHEP, 08, 128, (2019) · Zbl 1421.83049 · doi:10.1007/JHEP08(2019)128
[44] Blåbäck, J.; Gautason, FF; Ruipérez, A.; Van Riet, T., Anti-brane singularities as red herrings, JHEP, 12, 125, (2019) · Zbl 1431.81116 · doi:10.1007/JHEP12(2019)125
[45] Nguyen, N., Comments on the stability of the KPV state, JHEP, 11, 055, (2020) · Zbl 1456.83047 · doi:10.1007/JHEP11(2020)055
[46] Nguyen, N.; Niarchos, V., On matched asymptotic expansions of backreacting metastable anti-branes, JHEP, 06, 055, (2022) · Zbl 1522.81393 · doi:10.1007/JHEP06(2022)055
[47] Van Riet, T.; Zoccarato, G., Beginners lectures on flux compactifications and related Swampland topics, Phys. Rept., 1049, 1, (2024) · Zbl 1539.81100 · doi:10.1016/j.physrep.2023.11.003
[48] D.J. Weir, Gravitational waves from a first order electroweak phase transition: a brief review, Phil. Trans. Roy. Soc. Lond. A376 (2018) 20170126 [Erratum ibid.381 (2023) 20230212] [arXiv:1705.01783] [INSPIRE]. · Zbl 1402.81014
[49] C. Caprini and D.G. Figueroa, Cosmological Backgrounds of Gravitational Waves, Class. Quant. Grav.35 (2018) 163001 [arXiv:1801.04268] [INSPIRE]. · Zbl 1409.83039
[50] A. Mazumdar and G. White, Review of cosmic phase transitions: their significance and experimental signatures, Rept. Prog. Phys.82 (2019) 076901 [arXiv:1811.01948] [INSPIRE].
[51] Croon, D., GUT Physics in the era of the LHC, Front. in Phys., 7, 76, (2019) · doi:10.3389/fphy.2019.00076
[52] Agrawal, P.; Obied, G.; Steinhardt, PJ; Vafa, C., On the Cosmological Implications of the String Swampland, Phys. Lett. B, 784, 271, (2018) · doi:10.1016/j.physletb.2018.07.040
[53] Hebecker, A.; Wrase, T., The Asymptotic dS Swampland Conjecture — a Simplified Derivation and a Potential Loophole, Fortsch. Phys., 67, 1800097, (2019) · Zbl 1535.83016 · doi:10.1002/prop.201800097
[54] Bedroya, A.; Vafa, C., Trans-Planckian Censorship and the Swampland, JHEP, 09, 123, (2020) · Zbl 1454.85006 · doi:10.1007/JHEP09(2020)123
[55] A. Bedroya, R. Brandenberger, M. Loverde and C. Vafa, Trans-Planckian Censorship and Inflationary Cosmology, Phys. Rev. D101 (2020) 103502 [arXiv:1909.11106] [INSPIRE].
[56] Heidenreich, B.; Reece, M.; Rudelius, T., The Weak Gravity Conjecture and Emergence from an Ultraviolet Cutoff, Eur. Phys. J. C, 78, 337, (2018) · doi:10.1140/epjc/s10052-018-5811-3
[57] D. Harlow, Wormholes, Emergent Gauge Fields, and the Weak Gravity Conjecture, JHEP01 (2016) 122 [arXiv:1510.07911] [INSPIRE].
[58] B. Heidenreich, M. Reece and T. Rudelius, Emergence of Weak Coupling at Large Distance in Quantum Gravity, Phys. Rev. Lett.121 (2018) 051601 [arXiv:1802.08698] [INSPIRE].
[59] Grimm, TW; Palti, E.; Valenzuela, I., Infinite Distances in Field Space and Massless Towers of States, JHEP, 08, 143, (2018) · Zbl 1396.81151 · doi:10.1007/JHEP08(2018)143
[60] P. Agrawal, S. Gukov, G. Obied and C. Vafa, Topological Gravity as the Early Phase of Our Universe, arXiv:2009.10077 [INSPIRE].
[61] Brandenberger, RH; Vafa, C., Superstrings in the Early Universe, Nucl. Phys. B, 316, 391, (1989) · doi:10.1016/0550-3213(89)90037-0
[62] Brustein, R.; Steinhardt, PJ, Challenges for superstring cosmology, Phys. Lett. B, 302, 196, (1993) · doi:10.1016/0370-2693(93)90384-T
[63] Conlon, JP; Revello, F., Catch-me-if-you-can: the overshoot problem and the weak/inflation hierarchy, JHEP, 11, 155, (2022) · Zbl 1536.83161 · doi:10.1007/JHEP11(2022)155
[64] Balasubramanian, V.; Berglund, P.; Conlon, JP; Quevedo, F., Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP, 03, 007, (2005) · doi:10.1088/1126-6708/2005/03/007
[65] Conlon, JP; Quevedo, F.; Suruliz, K., Large-volume flux compactifications: Moduli spectrum and D3/D7 soft supersymmetry breaking, JHEP, 08, 007, (2005) · doi:10.1088/1126-6708/2005/08/007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.