×

Dispersion and thermo-acoustoelastic effects of guided waves in the laminated cylindrical shells with SMA-reinforced core and nanocomposite surfaces. (English) Zbl 07836454

Summary: In this paper, dispersion properties of guided waves in multilayer composite cylindrical shells are studied, which is composed of the inner and outer hybrid nanocomposite (MHC) layers and the middle composite core layer reinforced with shape memory alloy (SMA) fibers. According to the Hamiltonian principle and the thermoelastic theory, wave equations of the composite structure at different ambient temperatures are derived and discretized with spectral elements. By combing the thermal effects and the acoustoelastic effects, the modified semi-analytical finite element method is proposed here for the thermo-acoustoelastic effects of wave characteristics in laminated composite shells. The influence of important parameters on the dispersion characteristics of the structure is explored. The results show that the coupling of SMA fiber reinforced composite layer and MHC layers can significantly improve wave propagation characteristics of the composite cylindrical shells. The frequency of modal conversion increases with the increase of CNT volume fraction. Smaller radius-to-thickness ratios are favorable for internal wave propagation in the structure. This work is of great significance for the regulation of elastic wave propagation in multilayered cylindrical shell structures, and provides a valuable guide for the design and optimization of shell structures in engineering applications.

MSC:

74J05 Linear waves in solid mechanics
74E30 Composite and mixture properties
74K25 Shells
74F05 Thermal effects in solid mechanics
74S25 Spectral and related methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Soni, SK; Thomas, B.; Kar, VR, A comprehensive review on cnts and cnt-reinforced composites: syntheses, characteristics and applications, Mater. Today Commun., 25, 2020 · doi:10.1016/j.mtcomm.2020.101546
[2] Kanu, NJ; Vates, UK; Singh, GK; Chavan, S., Fracture problems, vibration, buckling, and bending analyses of functionally graded materials: a state-of-the-art review including smart fgms, Part. Sci. Technol., 37, 5, 583-608, 2019 · doi:10.1080/02726351.2017.1410265
[3] Liew, K.; Lei, Z.; Zhang, L., Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review, Compos. Struct., 120, 90-97, 2015 · doi:10.1016/j.compstruct.2014.09.041
[4] Sofiyev, A., On the vibration and stability behaviors of heterogeneous-CNTRC-truncated conical shells under axial load in the context of fsdt, Thin-Walled Struct., 151, 2020 · doi:10.1016/j.tws.2020.106747
[5] Mehar, K.; Panda, SK, Geometrical nonlinear free vibration analysis of fg-cnt reinforced composite flat panel under uniform thermal field, Compos. Struct., 143, 336-346, 2016 · doi:10.1016/j.compstruct.2016.02.038
[6] Mehar, K.; Panda, SK, Numerical investigation of nonlinear thermomechanical deflection of functionally graded cnt reinforced doubly curved composite shell panel under different mechanical loads, Compos. Struct., 161, 287-298, 2017 · doi:10.1016/j.compstruct.2016.10.135
[7] Bisheh, H.; Civalek, O., Vibration of smart laminated carbon nanotube-reinforced composite cylindrical panels on elastic foundations in hygrothermal environments, Thin-Walled Struct., 155, 2020 · doi:10.1016/j.tws.2020.106945
[8] Bisheh, H.; Wu, N.; Rabczuk, T., Free vibration analysis of smart laminated carbon nanotube-reinforced composite cylindrical shells with various boundary conditions in hygrothermal environments, Thin-Walled Struct., 149, 2020 · doi:10.1016/j.tws.2019.106500
[9] Bisheh, H.; Rabczuk, T.; Wu, N., Effects of nanotube agglomeration on wave dynamics of carbon nanotube-reinforced piezocomposite cylindrical shells, Compos. B Eng., 187, 2020 · doi:10.1016/j.compositesb.2019.107739
[10] Bisheh, HK; Wu, N., Analysis of wave propagation characteristics in piezoelectric cylindrical composite shells reinforced with carbon nanotubes, Int. J. Mech. Sci., 145, 200-220, 2018 · doi:10.1016/j.ijmecsci.2018.07.002
[11] Bisheh, H.; Wu, N., Wave propagation in smart laminated composite cylindrical shells reinforced with carbon nanotubes in hygrothermal environments, Compos. B Eng., 162, 219-241, 2019 · doi:10.1016/j.compositesb.2018.10.064
[12] Yahia, SA; Atmane, HA; Houari, MSA; Tounsi, A., Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories, Struct. Eng. Mech.: Int. J., 53, 6, 1143-1165, 2015 · doi:10.12989/sem.2015.53.6.1143
[13] Boukhari, A.; Atmane, HA; Tounsi, A.; Adda Bedia, E.; Mahmoud, S., An efficient shear deformation theory for wave propagation of functionally graded material plates, Struct. Eng. Mech.: Int. J., 57, 5, 837-859, 2016 · doi:10.12989/sem.2016.57.5.837
[14] Li, C.; Han, Q., Guided waves propagation in sandwich cylindrical structures with functionally graded graphene-epoxy core and piezoelectric surface layers, J. Sandwich Struct. Mater., 23, 8, 3878-3901, 2021 · doi:10.1177/1099636220959034
[15] Singh, AK; Rajput, P.; Guha, S.; Singh, S., Propagation characteristics of love-type wave at the electro-mechanical imperfect interface of a piezoelectric fiber-reinforced composite layer overlying a piezoelectric half-space, Eur. J. Mech.-A/Solids, 93, 2022 · Zbl 07477411 · doi:10.1016/j.euromechsol.2022.104527
[16] Park, J-S; Kim, J-H; Moon, S-H, Vibration of thermally post-buckled composite plates embedded with shape memory alloy fibers, Compos. Struct., 63, 2, 179-188, 2004 · doi:10.1016/S0263-8223(03)00146-6
[17] Tsukamoto, H., Mechanical behavior of shape memory alloy fiber reinforced aluminum matrix composites, Mater. Today Commun., 29, 2021 · doi:10.1016/j.mtcomm.2021.102750
[18] Al-Furjan, M.; Habibi, M.; Shan, L.; Tounsi, A., On the vibrations of the imperfect sandwich higher-order disk with a lactic core using generalize differential quadrature method, Compos. Struct., 257, 2021 · doi:10.1016/j.compstruct.2020.113150
[19] Karimiasl, M.; Ebrahimi, F.; Mahesh, V., Nonlinear forced vibration of smart multiscale sandwich composite doubly curved porous shell, Thin-Walled Struct., 143, 2019 · doi:10.1016/j.tws.2019.04.044
[20] Ebrahimi, F.; Dabbagh, A., Vibration analysis of multi-scale hybrid nanocomposite plates based on a halpin-tsai homogenization model, Compos. B Eng., 173, 2019 · doi:10.1016/j.compositesb.2019.106955
[21] Mehar, K.; Mishra, PK; Panda, SK, Thermal buckling strength of smart nanotube-reinforced doubly curved hybrid composite panels, Comput. Math. Appl., 90, 13-24, 2021 · Zbl 1524.74434
[22] Al-Furjan, M.; Dehini, R.; Paknahad, M.; Habibi, M.; Safarpour, H., On the nonlinear dynamics of the multi-scale hybrid nanocomposite-reinforced annular plate under hygro-thermal environment, Arch. Civ. Mech. Eng., 21, 1, 4, 2021 · doi:10.1007/s43452-020-00151-w
[23] Al-Furjan, M.; Oyarhossein, MA; Habibi, M.; Safarpour, H.; Jung, DW; Tounsi, A., On the wave propagation of the multi-scale hybrid nanocomposite doubly curved viscoelastic panel, Compos. Struct., 255, 2021 · doi:10.1016/j.compstruct.2020.112947
[24] Samaratunga, D.; Jha, R.; Gopalakrishnan, S., Wavelet spectral finite element for wave propagation in shear deformable laminated composite plates, Compos. Struct., 108, 341-353, 2014 · doi:10.1016/j.compstruct.2013.09.027
[25] Nanda, N., Wave propagation analysis of laminated composite shell panels using a frequency domain spectral finite element model, Appl. Math. Model., 89, 1025-1040, 2021 · Zbl 1481.74513 · doi:10.1016/j.apm.2020.07.006
[26] Sahoo, B., Mehar, K., Sahoo, B., Sharma, N., Panda, S.K.: Thermal post-buckling analysis of graded sandwich curved structures under variable thermal loadings. Eng. Comput. 1-17 (2021)
[27] Liu, X.; Karami, B.; Shahsavari, D.; Civalek, O., Elastic wave characteristics in damped laminated composite nano-scaled shells with different panel shapes, Compos. Struct., 267, 2021 · doi:10.1016/j.compstruct.2021.113924
[28] Yu, J.; Wang, X.; Zhang, X., An analytical integration Legendre polynomial series approach for Lamb waves in fractional order thermoelastic multilayered plates, Math. Methods Appl. Sci., 45, 12, 7631-7651, 2022 · Zbl 1538.74072 · doi:10.1002/mma.8266
[29] Zheng, M.; Ma, H.; Lyu, Y., Derivation of circumferential guided waves equations for a multilayered laminate composite hollow cylinder by state-vector and Legendre polynomial hybrid formalism, Compos. Struct., 255, 2020 · doi:10.1016/j.compstruct.2020.112950
[30] Dodson, J.; Inman, D., Thermal sensitivity of lamb waves for structural health monitoring applications, Ultrasonics, 53, 3, 677-685, 2013 · doi:10.1016/j.ultras.2012.10.007
[31] Kolahchi, R.; Safari, M.; Esmailpour, M., Dynamic stability analysis of temperature-dependent functionally graded cnt-reinforced visco-plates resting on orthotropic elastomeric medium, Compos. Struct., 150, 255-265, 2016 · doi:10.1016/j.compstruct.2016.05.023
[32] Hajmohammad, MH; Azizkhani, MB; Kolahchi, R., Multiphase nanocomposite viscoelastic laminated conical shells subjected to magneto-hygrothermal loads: dynamic buckling analysis, Int. J. Mech. Sci., 137, 205-213, 2018 · doi:10.1016/j.ijmecsci.2018.01.026
[33] Wang, X.; Ren, X.; Zhou, H., Dynamics of thermoelastic Lamb waves in functionally graded nanoplates based on the modified nonlocal theory, Appl. Math. Model., 117, 142-161, 2023 · Zbl 1510.82023 · doi:10.1016/j.apm.2022.12.022
[34] Wan, P.; Al-Furjan, M.; Kolahchi, R.; Shan, L., Application of DGHFEM for free and forced vibration, energy absorption, and post-buckling analysis of a hybrid nanocomposite viscoelastic rhombic plate assuming cnts waviness and agglomeration, Mech. Syst. Signal Process., 189, 2023 · doi:10.1016/j.ymssp.2022.110064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.