×

Integrable \((3 + 1)\)-dimensional generalization for the dispersionless Davey-Stewartson system. (English) Zbl 07835577

Summary: This paper introduces a \((3 + 1)\)-dimensional dispersionless integrable system, utilizing a Lax pair involving contact vector fields, in alignment with methodologies presented by A. Sergyeyev [Nonlinear Dyn. 91, No. 3, 1677–1680 (2018; Zbl 1390.37119)]. Significantly, it is shown that the proposed system serves as an integrable \((3 + 1)\)-dimensional generalization of the well-studied \((2 + 1)\)-dimensional dispersionless Davey-Stewartson system. This way, an interesting new example on integrability in higher dimensions is presented, with potential applications in analyzing three-dimensional nonlinear waves across various fields, including oceanography, fluid dynamics, plasma physics, and nonlinear optics. Importantly, the integrable nature of the system suggests that established techniques like the study of symmetries, conservation laws, and Hamiltonian structures could be applicable.

MSC:

76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
35Q35 PDEs in connection with fluid mechanics
35Q60 PDEs in connection with optics and electromagnetic theory

Citations:

Zbl 1390.37119
Full Text: DOI

References:

[1] Ablowitz, MJ; Segur, H., Solitons and the Inverse Scattering Transform, 1981, Philadelphia: SIAM, Philadelphia · Zbl 0472.35002 · doi:10.1137/1.9781611970883
[2] Calogero, F.: Why are certain nonlinear PDEs both widely applicable and integrable? In: What is Integrability?, pp. 1-62. Springer (1991) · Zbl 0808.35001
[3] Mason, L.J., Woodhouse, N.M.: Integrability, self-duality, and twistor theory. Number 15 in London Mathematical Society monographs, New Series. Oxford University Press, New York (1996)
[4] Doktorov, EV; Leble, SB, A Dressing Method in Mathematical Physics, 2007, Dordrecht: Springer, Dordrecht · Zbl 1142.35002
[5] Witten, E., Searching for integrability, J. Geom. Phys., 8, 1-4, 327-334, 1992 · Zbl 0758.58031 · doi:10.1016/0393-0440(92)90055-6
[6] Li, L.; Yan, Y.; Xie, Y., Variable separation solution for an extended (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation, Appl. Math. Lett., 132, 2022 · Zbl 1491.35125 · doi:10.1016/j.aml.2022.108185
[7] Sergyeyev, A.: New integrable (3+1)-dimensional systems and contact geometry. Lett. Math. Phys. 108(2), 359-376 (2018). arXiv:1401.2122 · Zbl 1384.37087
[8] Kodama, Y.; Gibbons, J., A method for solving the dispersionless KP hierarchy and its exact solutions. II, Phys. Lett. A, 135, 3, 167-170, 1989 · doi:10.1016/0375-9601(89)90255-7
[9] Konopelchenko, B.; Martínez Alonso, L., Dispersionless scalar integrable hierarchies, Whitham hierarchy, and the quasiclassical \(\overline{\partial } \)-dressing method, J. Math. Phys., 43, 7, 3807-3823, 2002 · Zbl 1060.37056 · doi:10.1063/1.1481545
[10] Yi, G., On the dispersionless Davey-Stewartson system: Hamiltonian vector field Lax pair and relevant nonlinear Riemann-Hilbert problem for dDS-II system, Lett. Math. Phys., 110, 3, 445-463, 2020 · Zbl 1437.37085 · doi:10.1007/s11005-019-01224-5
[11] Yi, G., On the dispersionless Davey-Stewartson hierarchy: Zakharov-Shabat equations, twistor structure, and Lax-Sato formalism, Z. fur Angew. Math. Mech., 102, 8, 2022 · Zbl 1534.35379 · doi:10.1002/zamm.202100435
[12] Gungor, F.; Ozemir, C., Dispersionless Davey-Stewartson system: Lie symmetry algebra, symmetry group and exact solutions, Eur. Phys. J. plus, 136, 715, 2021 · doi:10.1140/epjp/s13360-021-01688-2
[13] Yi, G.; Liao, X.; Tian, K.; Wang, Z., On the dispersionless Davey-Stewartson system: Hamiltonian vector field Lax pair and relevant nonlinear Riemann-Hilbert problem for dDS-II system, Appl. Math. Lett., 131, 2022 · Zbl 1503.37076 · doi:10.1016/j.aml.2022.108012
[14] Martínez Alonso, L.; Medina Reus, E., Localized coherent structures of the Davey-Stewartson equation in the bilinear formalism, J. Math. Phys., 33, 9, 2947-2957, 1992 · Zbl 0825.35118 · doi:10.1063/1.529564
[15] Ablowitz, MJ; Haberman, R., Nonlinear evolution equations-two and three dimensions, Phys. Rev. Lett., 35, 18, 1185-1188, 1975 · doi:10.1103/PhysRevLett.35.1185
[16] Linares, F.; Ponce, G., On the Davey-Stewartson systems, Ann. Inst. Henri Poincare (C) Anal., 10, 5, 523-548, 1993 · Zbl 0807.35136 · doi:10.1016/s0294-1449(16)30203-7
[17] Xin, X.; Xia, Y.; Zhang, L.; Liu, H., Bäcklund transformations, symmetry reductions and exact solutions of (2+1)-dimensional nonlocal DS equations, Appl. Math. Lett., 132, 2022 · Zbl 1492.35322 · doi:10.1016/j.aml.2022.108157
[18] Ye, R.; Zhang, Y., A binary Darboux transformation for multi-component nonlinear Schrödinger equations and dark vector soliton solutions, Phys. Fluids, 35, 11, 2023 · doi:10.1063/5.0178235
[19] Ye, RS; Zhang, Y., General soliton solutions to a reverse-time nonlocal nonlinear Schrödinger equation, Stud. Appl. Math., 145, 2, 197-216, 2020 · Zbl 1452.35198 · doi:10.1111/sapm.12317
[20] Gao, X-Y, Considering the wave processes in oceanography, acoustics and hydrodynamics by means of an extended coupled (2+ 1)-dimensional burgers system, Chin. J. Phys., 86, 572-577, 2023 · Zbl 1541.35014 · doi:10.1016/j.cjph.2023.10.051
[21] Gao, X.-Y.: Letter to the editor on the korteweg-de vries-type systems inspired by results phys. 51, 106624 (2023) and 50, 106566 (2023). Results Phys., 53:106932 (2023)
[22] Gao, X.-Y.: Oceanic shallow-water investigations on a generalized whitham-broer-kaup-boussinesq-kupershmidt system. Phys. Fluids 35(12) (2023)
[23] Gao, X-Y; Guo, Y-J; Shan, W-R, Ultra-short optical pulses in a birefringent fiber via a generalized coupled hirota system with the singular manifold and symbolic computation, Appl. Math. Lett., 140, 2023 · Zbl 1520.78040 · doi:10.1016/j.aml.2022.108546
[24] Krasil’shchik, J.; Verbovetsky, A.; Vitolo, R., The Symbolic Computation of Integrability Structures for Partial Differential Equations, 2017, New York: Springer, New York · Zbl 1407.68015 · doi:10.1007/978-3-319-71655-8
[25] Olver, PJ, Applications of Lie Groups to Differential Equations, 1986, New York: Springer, New York · Zbl 0588.22001
[26] Dunajski, M., Ferapontov, E.V., Kruglikov, B.: On the Einstein-Weyl and conformal self-duality equations. J. Math. Phys. 56(8) (2015) · Zbl 1325.53058
[27] Ferapontov, EV; Moro, A.; Sokolov, VV, Hamiltonian systems of hydrodynamic type in 2+1 dimensions, Commun. Math. Phys., 285, 31-65, 2009 · Zbl 1228.37041 · doi:10.1007/s00220-008-0522-5
[28] Serre, D.: Systemes hyperboliques riches de lois de conservation. Pitman res. notes math. ser., pp. 248-248 (1994)
[29] Blair, DE, Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Math, 2002, Basel: Birkhäuser, Basel · Zbl 1011.53001 · doi:10.1007/978-1-4757-3604-5
[30] Bravetti, A., Contact Hamiltonian dynamics: the concept and its use, Entropy, 19, 10, 535, 2017 · doi:10.3390/e19100535
[31] Sergyeyev, A., Integrable (3+ 1)-dimensional systems with rational Lax pairs, Nonlinear Dyn., 91, 1677-1680, 2018 · Zbl 1390.37119 · doi:10.1007/s11071-017-3973-4
[32] Sergyeyev, A., Integrable (3+ 1)-dimensional system with an algebraic Lax pair, Appl. Math. Lett., 92, 196-200, 2019 · Zbl 1412.37068 · doi:10.1016/j.aml.2019.01.026
[33] Zakharov, V.E.: Dispersionless limit of integrable systems in 2+1 dimensions. In: Singular Limits of Dispersive Waves, pp. 165-174. Springer (1994) · Zbl 0852.35130
[34] Carbonaro, P., Three-dimensional modulation of electron-acoustic waves: 3+1 Davey-Stewartson system, Chaos Solit. Fractals, 45, 7, 959-965, 2012 · doi:10.1016/j.chaos.2012.03.008
[35] Han, PF; Zhang, Y., Linear superposition formula of solutions for the extended (3+1)-dimensional shallow water wave equation, Nonlinear Dyn., 109, 1019-1032, 2022 · doi:10.1007/s11071-022-07468-6
[36] Han, PF; Zhang, Y.; Jin, CH, Novel evolutionary behaviors of localized wave solutions and bilinear auto-Bäcklund transformations for the generalized (3+1)-dimensional Kadomtsev-Petviashvili equation, Nonlinear Dyn., 111, 8617, 2023 · doi:10.1007/s11071-023-08256-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.