×

Stochastically ordered aggregation operators. (English) Zbl 07834349

Summary: In aggregation theory, there exists a large number of aggregation functions that are defined in terms of rearrangements in increasing order of the arguments. Prominent examples are the Ordered Weighted Operator and the Choquet and Sugeno integrals. Following a probability approach, ordering random variables by means of stochastic orders can be also a way to define aggregations of random variables. However, stochastic orders are not total orders, thus pairs of incomparable distributions can appear. This paper is focused on the definition of aggregations of random variables that take into account the stochastic ordination of the components of the input random vectors. Three alternatives are presented, the first one by using expected values and admissible permutations, then a modification for multivariate Gaussian random vectors and a third one that involves a transformation of the initial random vectors in new ones whose components are ordered with respect to the usual stochastic order. A deep theoretical study of the properties of all the proposals is made. A practical example regarding temperature prediction is provided.

MSC:

60E15 Inequalities; stochastic orderings
62H05 Characterization and structure theory for multivariate probability distributions; copulas
Full Text: DOI

References:

[1] Baz, J.; Díaz, I.; Montes, S., The choice of an appropriate stochastic order to aggregate random variables, 40-47
[2] Beliakov, G.; James, S.; Wu, J., Discrete Fuzzy Measures (2020), Springer · Zbl 1415.90002
[3] Beliakov, G.; Pradera, A.; Calvo, T., Aggregation Functions: A Guide for Practitioners, vol. 221 (2007), Springer
[4] Candanedo, L. M.; Feldheim, V.; Deramaix, D., Appliances energy prediction dataset (2017), Online
[5] Candanedo, L. M.; Feldheim, V.; Deramaix, D., Data driven prediction models of energy use of appliances in a low-energy house. Energy Build., 81-97 (2017)
[6] Cawley, G. C.; Talbot, N. L., On over-fitting in model selection and subsequent selection bias in performance evaluation. J. Mach. Learn. Res., 2079-2107 (2010) · Zbl 1242.62051
[7] Chandra, S., On the mixtures of probability distributions. Scand. J. Stat., 105-112 (1977) · Zbl 0369.60024
[8] de Amo, E.; Carrillo, M. D.; Fernández-Sánchez, J., Characterization of all copulas associated with non-continuous random variables. Fuzzy Sets Syst., 103-112 (2012) · Zbl 1237.62068
[9] Ferrero-Jaurrieta, M.; Horanská, L.; Lafuente, J.; Mesiar, R.; Dimuro, G. P.; Takáč, Z.; Gómez, M.; Fernández, J.; Bustince, H., Degree of totalness: how to choose the best admissible permutation for vector fuzzy integration
[10] García-Zamora, D.; Labella, Á.; Rodríguez, R. M.; Martínez, L., Symmetric weights for OWA operators prioritizing intermediate values. The EVR-OWA operator. Inf. Sci., 583-602 (2022) · Zbl 1535.68378
[11] Genest, C.; Nešlehová, J., A primer on copulas for count data. ASTIN Bulletin: The Journal of the IAA, 2, 475-515 (2007) · Zbl 1274.62398
[12] Grabisch, M.; Marichal, J.-L.; Mesiar, R.; Pap, E., Aggregation Functions, vol. 127 (2009), Cambridge University Press · Zbl 1196.00002
[13] Günther, F.; Fritsch, S., Neuralnet: training of neural networks. R J., 1, 30 (2010)
[14] Hosking, J., L-estimation, 215-235 · Zbl 0922.62019
[15] Itô, K., An Introduction to Probability Theory (1984), Cambridge University Press · Zbl 0545.60001
[16] James, S., An Introduction to Data Analysis Using Aggregation Functions in R (2016), Springer · Zbl 1361.62001
[17] Jin, L.; Mesiar, R.; Yager, R., Ordered weighted averaging aggregation on convex poset. IEEE Trans. Fuzzy Syst., 3, 612-617 (2019)
[18] Liaw, A.; Wiener, M., Classification and regression by randomforest. R News, 3, 18-22 (2002)
[19] Montgomery, D. C.; Jennings, C. L.; Kulahci, M., Introduction to Time Series Analysis and Forecasting (2015), John Wiley & Sons · Zbl 1348.91001
[20] Nelsen, R. B., An Introduction to Copulas (2007), Springer Science & Business Media
[21] Paternain, D.; Jin, L.; Mesiar, R.; Vavríková, L.; Bustince, H., OWA operators based on admissible permutations, 1-5
[22] Pérez-Fernández, R., Multivariate OWA functions. Fuzzy Sets Syst. (2022)
[23] Pollesch, N.; Dale, V. H., Applications of aggregation theory to sustainability assessment. Ecol. Econ., 117-127 (2015)
[24] Rohatgi, V. K.; Saleh, A. M.E., An Introduction to Probability and Statistics (2015), John Wiley & Sons · Zbl 1321.62003
[25] Shaked, M.; Shanthikumar, J. G., Stochastic Orders (2007), Springer · Zbl 1111.62016
[26] Sklar, M., Fonctions de repartition an dimensions et leurs marges. Publ. Inst. Stat. Univ. Paris, 229-231 (1959) · Zbl 0100.14202
[27] Tasena, S., On a distribution form of subcopulas. Int. J. Approx. Reason., 1-19 (2021) · Zbl 1466.62330
[28] Tasena, S., Central limit theorem for subcopulas under the Manhattan distance. J. Math. Anal. Appl., 2 (2022) · Zbl 07473010
[29] Van De Gronde, J. J.; Roerdink, J. B., Frames, the Loewner order and eigendecomposition for morphological operators on tensor fields. Pattern Recognit. Lett., 40-49 (2014)
[30] Yager, R. R., Families of OWA operators. Fuzzy Sets Syst., 2, 125-148 (1993) · Zbl 0790.94004
[31] Yager, R. R., Induced aggregation operators. Fuzzy Sets Syst., 1, 59-69 (2003) · Zbl 1056.68146
[32] Yager, R. R., On the OWA aggregation with probabilistic inputs. Int. J. Uncertain. Fuzziness Knowl.-Based Syst., Suppl. 1, 143-162 (2015) · Zbl 1377.91077
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.