×

Characterizations of Lie centralizers of generalized matrix algebras. (English) Zbl 07834086

Summary: Let \(\mathcal{G}\) be a generalized matrix algebra. A linear map \(\phi : \mathcal{G} \to \mathcal{G}\) is said to be a left (right) Lie centralizer at \(E \in \mathcal{G}\) if \(\phi([S, T]) = [\phi(S), T] (\phi([S, T]) = [S, \phi(T)])\) holds for all \(S, T \in \mathcal{G}\) with \(ST = E\). \(\phi\) is of a standard form if \(\phi(A) = ZA + \gamma(A)\) for all \(A \in \mathcal{G}\), where \(Z\) is in the center of \(\mathcal{G}\) and \(\gamma\) is a linear map from \(\mathcal{G}\) into its center vanishing on each commutator \([S, T]\) whenever \(ST = E\). In this paper, we give a complete characterization of \(\phi\). It is shown that, under some suitable assumptions on \(\mathcal{G}\), \(\phi\) has a standard form.

MSC:

16W25 Derivations, actions of Lie algebras
47B47 Commutators, derivations, elementary operators, etc.
Full Text: DOI

References:

[1] Amitsur, S. A. (1971). Rings of quotients and Morita contexts. J. Algebra17:273-298. DOI: . · Zbl 0221.16014
[2] Akemann, C., Pedersen, G., Tomiyama, J. (1973). Multipliers of \(C^*\)-algebras. J. Funct. Anal.13:277-301. · Zbl 0258.46052
[3] Benkovič, D. (2015). Lie triple derivations of unital algebras with idempotents. Linear Multilinear Algebra63:141-367. DOI: . · Zbl 1315.16037
[4] Behfar, R., Ghahramani, H. (2021). Lie maps on triangular algebras without assuming unity. Mediterr. J. Math.18:1-28. DOI: . · Zbl 1484.16048
[5] Cheung, W. S. (2001). Commuting maps of triangulai algebras. J. London Math. 63:117-127. DOI: . · Zbl 1014.16035
[6] Cheung, W. S. (2003). Lie derivations of triangulai algebras. Linear Multilinear Algebra51:299-310. DOI: . · Zbl 1060.16033
[7] Fadaee, B., Ghahramani, H. (2022). Lie centralizers at the zero products on generalized matrix algebras. J. Algebra Appl.21:1-22. DOI: . · Zbl 1509.47050
[8] Fadaee, B., Fošner, A., Ghahramani, H. (2022). Centralizers of Lie structure of triangular algebras. Results Math. 77:Paper No. 222, 16 pp. DOI: . · Zbl 1517.16039
[9] Fošner, A., Jing, W. (2019). Lie centralizers on triangular rings and nest algebras. Adv. Oper. Theory4:342-350. DOI: . · Zbl 1403.16038
[10] Ghahramani, H., Jing, W. (2021). Lie centralizers at zero products on a class of operator algebras. Ann. Funct. Anal.12:1-12. DOI: . · Zbl 1521.47115
[11] Ghahramani, H., Mokhtari, A., Wei, F. (2023). Lie centralizers and commutant preserving maps on generalized matrix algebras. J. Algebra Appl. DOI: .
[12] Ghimire, P. (2021). Linear Lie centralizers of the algebra of strictly block upper triangular matrices. Oper. Matrices15:303-311. DOI: . · Zbl 1482.15014
[13] Ghimire, P. (2022). Linear Lie centralizers of the algebra of dominant block upper triangular matrices. Linear Multilinear Algebra70:5040-5051. DOI: . · Zbl 1512.16037
[14] Jabeen, A. (2021). Lie (Jordan) centralizers on generalized matrix algebras. Commun. Algebra49:278-291. DOI: . · Zbl 1464.16040
[15] Kosi-Ulbl, I., Vukman, J. (2006). On centralizers of standard operator algebras and semisimple \(H^*\)-algebras. Acta Math. Hungarica110:117-133.
[16] Liu, L. (2016). Characterization of centralizers on nest subalgebras of von Neumann algebras by local action. Linear Multilinear Algebra64:383-392. DOI: . · Zbl 1337.47108
[17] Liu, L. (2022). On nonlinear Lie centralizers of generalized matrix algebras. Linear Multilinear Algebra70:2693-2705. DOI: . · Zbl 07596080
[18] Liu, L., Gao, K. (2023). Characterizations of Lie centralizers of triangular algebras. Linear Multilinear Algebra71:2375-2391. DOI: . · Zbl 07730345
[19] Li, P., Han, D., Tang, W. (2013). Centralizers and Jordan derivations for CSL subalgebras of von Neumann algebras. J. Oper. Theory69:117-133. DOI: . · Zbl 1299.47070
[20] Xiao, Z., Wei, F. (2010). Commuting mappings of generalized matrix algebras. Linear Algebra Appl. 433:2178-2197. DOI: . · Zbl 1206.15016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.