×

A review of hyperloop aerodynamics. (English) Zbl 07833794

Summary: Evacuated tube transport, also known as Hyperloop, is a proposed mode of ground transport that uses depressurised tubes to transport passengers and cargo at high-speeds. The aerodynamic flow regime of a Hyperloop system combines the characteristics of low Reynolds number, high Mach number, and confined/choked flow. This makes it unique compared to more commonly studied aerodynamic problems, and as such it is not yet well understood. This review aims to evaluate the current state of Hyperloop aerodynamics research. First, the effects of low Reynolds number and compressibility in confined flows are explored. Next, 1D analysis is used to determine the theoretical flow characteristics of the Hyperloop. Analytical expressions are derived for the isentropic and Kantrowitz limits, which divide the state-space of the flow into choked and unchoked regimes. The use of Computational Fluid Dynamics to model the flow in the system is then discussed. This is by far the most active area of Hyperloop research, and results from the literature are evaluated and combined here to give further predictions for the expected flow states, which depend on the blockage ratio and Mach number. Finally, aerodynamic design considerations are explored, including the pod and tube geometry, boundary layer transition, ground proximity, ambient temperature, tube breaches and mitigating flow choking using bleed systems.

MSC:

76-XX Fluid mechanics

Software:

XFOIL
Full Text: DOI

References:

[1] International Energy Agency, World energy outlook 2021, 2021, URL https://iea.org/reports/world-energy-outlook-2021
[2] International Energy Agency, Net zero by 2050, 2021, URL https://iea.org/reports/net-zero-by-2050
[3] Baker, C.; Johnson, T.; Flynn, D.; Hemida, H.; Quinn, A.; Soper, D., Train aerodynamics: Fundamentals and applications, 2019, Butterworth-Heinemann
[4] Hyperloop One, C., Hyperloop one home page, 2023, URL https://hyperloop-one.com/. [Accessed: 03 October 2023]
[5] Musk, E., Hyperloop alpha, 2013, Tesla, SpaceX, URL https://tesla.com/sites/default/files/blog_images/hyperloop-alpha.pdf
[6] Decker, K.; Chin, J.; Peng, A.; Summers, C.; Nguyen, G.; Oberlander, A., Conceptual feasibility study of the hyperloop vehicle for next-generation transport, (55th AIAA aerospace sciences meeting, 2017)
[7] Abdelrahman, A. S.; Sayeed, J.; Youssef, M. Z., Hyperloop transportation system: Analysis, design, control, and implementation, IEEE Trans Ind Electron, 65, 9, 7427-7436, 2018
[8] Chaidez, E.; Bhattacharyya, S. P.; Karpetis, A. N., Levitation methods for use in the hyperloop high-speed transportation system, Energies, 12, 21, 2019
[9] Lee, H. W.; Kim, K. C.; Lee, J., Review of maglev train technologies, IEEE Trans Magn, 42, 7, 1917-1925, 2006
[10] Ji, W. Y.; Jeong, G.; Park, C. B.; Jo, I. H.; Lee, H. W., A study of non-symmetric double-sided linear induction motor for hyperloop all-in-one system (propulsion, levitation, and guidance), IEEE Trans Magn, 54, 11, 2018
[11] Choi, S. Y.; Lee, C. Y.; Jo, J. M.; Choe, J. H.; Oh, Y. J.; Lee, K. S., Sub-sonic linear synchronous motors using superconducting magnets for the hyperloop, Energies, 12, 24, 2019
[12] Flankl, M.; Wellerdieck, T.; Tüysüz, A.; Kolar, J. W., Scaling laws for electrodynamic suspension in high-speed transportation, IET Electr Power Appl, 12, 3, 357-364, 2018
[13] Lim, J.; Lee, C. Y.; Lee, J. H.; You, W.; Lee, K. S.; Choi, S., Design model of null-flux coil electrodynamic suspension for the hyperloop, Energies, 13, 19, 2020
[14] Lim, J.; Lee, C. Y.; Choi, S.; Lee, J. H.; Lee, K. S., Design optimization of a 2G HTS magnet for subsonic transportation, IEEE Trans Appl Supercond, 30, 4, 2020
[15] Choi, S.; Cho, M.; Lim, J., Electromagnetic drag forces between HTS magnet and tube infrastructure for hyperloop, Sci Rep, 13, 1, 1-20, 2023
[16] Tramacere, E.; Pakštys, M.; Galluzzi, R.; Amati, N.; Tonoli, A.; Lembke, T. A., Modeling and experimental validation of electrodynamic maglev systems, J Sound Vib, 568, Article 117950 pp., 2024
[17] Prosser, R. B., Medhurst, george (1759-1827), (Oxford dictionary of national biography, 2004, Oxford University Press)
[18] Hardenberg, H. O., The middle ages of the internal-combustion engine, 1794-1886, 1999, Society of Automotive Engineers
[19] Buchanan, R. A., The atmospheric railway of I. K. Brunel, Soc Stud Sci, 22, 2, 231-243, 1992
[20] Goddard, R. H., The limit of rapid transit, Sci Am, 101, 21, 366, 1909
[21] Forgacs, R. L., Evacuated tube vehicles versus jet aircraft for high-speed transportation, Proc IEEE, 61, 5, 604-616, 1973
[22] Macola, I. G., Timeline: tracing the evolution of hyperloop rail technology, 2021, URL https://railway-technology.com/features/timeline-tracing-evolution-hyperloop-rail-technology/
[23] Jufer, M.; Perret, F.-L.; Descoeudres, F.; Trottet, Y., Swissmetro, an efficient intercity subway system, Struct Eng Int, 3, 3, 184-189, 1993
[24] Rudolf, A., simulation of compressible flow in tunnel systems induced by trains traveling at high speed, 1998, EPFL Thesis No. 1806, [Ph.D. thesis]
[25] Cassat A. Swissmetro - Project Development Status. In: Proceedings of international symposium on speed-up service technology for railway and maglev systems, sTECH’03. 2003, p. 453-60.
[26] SwissMetro-NG, A., SwissMetro-NG home page, 2022, URL https://swissmetro-ng.org/. [Accessed: 09 March 2022]
[27] Oster, D.; Kumada, M.; Zhang, Y., Evacuated tube transport technologies (ET3): a maximum value global transportation network for passengers and cargo, J Modern Transp, 19, 1, 42-50, 2011
[28] ET3 Global Alliance Inc., D., Evacuated tube transport technologies - ’space travel on earth’, 2022, URL http://et3.com/. [Accessed: 20 March 2022]
[29] Bi, H.; Lei, B., Aerodynamic characteristics of evacuated tube high-speed train, (Proceedings of the 2nd international conference on transportation engineering, ICTE 2009, 2009, American Society of Civil Engineers (ASCE)), 3736-3741
[30] Kim, T. K.; Kim, K. H.; Kwon, H. B., Aerodynamic characteristics of a tube train, J Wind Eng Ind Aerodyn, 99, 12, 1187-1196, 2011
[31] Zhang, Y., Numerical simulation and analysis of aerodynamic drag on a subsonic train in evacuated tube transportation, J Modern Transp, 20, 1, 44-48, 2012
[32] Tang, Z.; Qin, J.; Sun, J., The aerodynamics analysis and optimization design of evacuated tube transportation, Sens Transducers, 158, 11, 414-420, 2013
[33] Ma, J.; Zhou, D.; Zhao, L.; Zhang, Y.; Zhao, Y., The approach to calculate the aerodynamic drag of maglev train in the evacuated tube, J Modern Transp, 21, 3, 200-208, 2013
[34] Chen, X.; Zhao, L.; Ma, J.; Liu, Y., Aerodynamic simulation of evacuated tube maglev trains with different streamlined designs, J Modern Transp, 20, 2, 115-120, 2012
[35] Braun, J.; Sousa, J.; Pekardan, C., Aerodynamic design and analysis of the hyperloop, AIAA J, 55, 12, 4053-4060, 2017
[36] Opgenoord, M. M.J.; Caplan, P. C., Aerodynamic design of the hyperloop concept, AIAA J, 56, 11, 4261-4270, 2018
[37] Nick, N.; Sato, Y., Computational fluid dynamics simulation of hyperloop pod predicting laminar-turbulent transition, Railway Eng Sci, 28, 1, 97-111, 2020
[38] Oh, J. S.; Kang, T.; Ham, S.; Lee, K. S.; Jang, Y. J.; Ryou, H. S., Numerical analysis of aerodynamic characteristics of hyperloop system, Energies, 12, 3, 518, 2019
[39] Sui, Y.; Niu, J.; Yu, Q.; Yuan, Y.; Cao, X.; Yang, X., Numerical analysis of the aerothermodynamic behavior of a hyperloop in choked flow, Energy, 237, 2021
[40] Kang, H.; Jin, Y.; Kwon, H.; Kim, K., A study on the aerodynamic drag of transonic vehicle in evacuated tube using computational fluid dynamics, Int J Aeronaut Space Sci, 18, 4, 614-622, 2017
[41] Le, T. T.G.; Jang, K. S.; Lee, K.-S.; Ryu, J., Numerical investigation of aerodynamic drag and pressure waves in hyperloop systems, Mathematics, 8, 11, 2020
[42] Tudor, D.; Paolone, M., Optimal design of the propulsion system of a hyperloop capsule, IEEE Trans Transp Electr, 5, 4, 1406-1418, 2019
[43] Tudor, D.; Paolone, M., Operational-driven optimal-design of a hyperloop system, Transp Eng, 5, 2021
[44] Connolly, D. P.; Woodward, P. K., HeliRail: A railway-tube transportation system concept, Transp Eng, 1, 2020
[45] Swisspod, D. P., Swisspod home page, 2022, URL https://swisspod.ch/. [Accessed: 20 March 2022]
[46] Hyperloop Transportation Technologies, D. P., Hyperlooptt home page, 2022, URL https://hyperlooptt.com/. [Accessed: 20 March 2022]
[47] Hardt Hyperloop, D. P., Hardt hyperloop home page, 2022, URL https://hardt.global. [Accessed: 20 March 2022]
[48] Zeleros, D. P., Zeleros hyperloop home page, 2022, URL https://zeleros.com/. [Accessed: 20 March 2022]
[49] Eurotube, D. P., Eurotube home page, 2022, URL https://eurotube.org/. [Accessed: 20 March 2022]
[50] Korea Railroad Research Institute, D. P., KKRI major research technologies, 2022, URL https://krri.re.kr/html/en/sub03/sub03_0301.html. [Accessed: 20 March 2022]
[51] TransPod, D. P., TransPod test facility, 2022, URL https://transpod.com/test-facility/. [Accessed: 20 March 2022]
[52] Mitropoulos, L.; Kortsari, A.; Koliatos, A., Hypernex deliverable D 2.1 observatory results, 2021, URL http://hypernex.industriales.upm.es/documents-and-results/
[53] U.S. standard atmosphereNOAA-S/T-76-1562, 1976, National Oceanic and Atmospheric Administration
[54] Lissaman, P. B.S., Low-Reynolds-number airfoils, Annu Rev Fluid Mech, 15, 1, 223-239, 1983 · Zbl 0535.76014
[55] Keogh, J.; Doig, G.; Diasinos, S.; Ryde, N.; South, N.; Australia, W., Flow compressibility effects around an open-wheel racing car, Aeronaut J, 118, 1210, 1409-1431, 2014
[56] Purcell, E. M., Life at low Reynolds number, Amer J Phys, 45, 1, 3-11, 1977
[57] Shyy, W.; Lian, Y.; Tang, J.; Viieru, D.; Liu, H., Aerodynamics of low Reynold number flyers, 2007, Cambridge University Press
[58] Singh, R. K.; Ahmed, M. R.; Zullah, M. A.; Lee, Y. H., Design of a low Reynolds number airfoil for small horizontal axis wind turbines, Renew Energy, 42, 66-76, 2012
[59] Koning, W. J.; Johnson, W.; Grip, H. F., Improved mars helicopter aerodynamic rotor model for comprehensive analyses, AIAA J, 57, 9, 3969-3979, 2019
[60] Anyoji, M.; Numata, D.; Nagai, H.; Asai, K., Effects of mach number and specific heat ratio on low-Reynolds-number airfoil flows, AIAA J, 53, 6, 1640-1654, 2015
[61] Carmichael BH. Low Reynolds number airfoil survey, volume 1. Technical report NASA CR-165803, 1981.
[62] Mueller, T. J.; Batill, S. M., Experimental studies of separation on a two-dimensional airfoil at low Reynolds numbers, AIAA J, 20, 4, 457-463, 1982
[63] Bizzozero, M.; Sato, Y.; Sayed, M. A., Aerodynamic study of a hyperloop pod equipped with compressor to overcome the Kantrowitz limit, J Wind Eng Ind Aerodyn, 218, Article 104784 pp., 2021
[64] Niu, J.; Sui, Y.; Yu, Q.; Cao, X.; Yuan, Y., Aerodynamics of railway train/tunnel system: A review of recent research, Energy Built Environ, 1, 4, 351-375, 2020
[65] Howe, M. S., The compression wave produced by a high-speed train entering a tunnel, Proc R Soc Lond Ser A Math Phys Eng Sci, 454, 1974, 1523-1534, 1998 · Zbl 0933.76082
[66] Takayama, K.; Sasoh, A.; Onodera, O.; Kaneko, R.; Matsui, Y., Experimental investigation on tunnel sonic boom, Shock Waves, 5, 127-138, 1995
[67] US Department of Transportation. Subway environmental design handbook volume I: Principles and applications. Technical report, 1976.
[68] Cross, D.; Hughes, B.; Ingham, D.; Ma, L., Enhancing the piston effect in underground railway tunnels, Tunnel Underground Space Technol, 61, 71-81, 2017
[69] Kirkland, C. J., (Engineering the channel tunnel, 1995, CRC Press)
[70] Matsuo, S., An overview of the seikan tunnel project, Tunnell Underground Space Technol, 1, 3-4, 323-331, 1986
[71] Simoni, R., Gotthard base tunnel, Switzerland – the world’s longest railway tunnel, Proc Inst Civil Eng, 167, 4, 159-166, 2014
[72] ProjecktBau, D., Technische innovationen am katzenbergtunnel, 2011
[73] Mancini, G.; Malfatti, A., Full scale measurements on high speed train etr 500 passing in open air and in tunnels of Italian high speed line, TRANSAERO — A Eur Initiat Transient Aerodyn Railway Syst Optim, 101-122, 2002
[74] Vardy, A. E., Unsteady airflows in rapid transit systems part 1: Measurements on the London transport victoria line, Proc Inst Mech Eng, 194, 341-348, 1980
[75] Wang, F.; Weng, M.; Xiong, K.; Han, J.; Obadi, I.; Liu, F., Study on aerodynamic pressures caused by double-train tracking operation in a metro tunnel, Tunnel Underground Space Technol, 123, Article 104434 pp., 2022
[76] Gilbert, T.; Baker, C. J.; Quinn, A., Gusts caused by high-speed trains in confined spaces and tunnels, J Wind Eng Ind Aerodyn, 121, 39-48, 2013
[77] Kim, J. Y.; Kim, K. Y., Experimental and numerical analyses of train-induced unsteady tunnel flow in subway, Tunnel Underground Space Technol, 22, 2, 166-172, 2007
[78] Zhang, L.; Yang, M.z.; Niu, J.q.; Liang, X.f.; Zhang, J., Moving model tests on transient pressure and micro-pressure wave distribution induced by train passing through tunnel, J Wind Eng Ind Aerodyn, 191, 1-21, 2019
[79] Yang, Q. S.; Song, J. H.; Yang, G. W., A moving model rig with a scale ratio of 1/8 for high speed train aerodynamics, J Wind Eng Ind Aerodyn, 152, 50-58, 2016
[80] Saito, S.; Iida, M.; Kajiyama, H., Numerical simulation of 1-D unsteady compressible flow in railway tunnels, J Environ Eng, 6, 4, 2011
[81] Ricco, P.; Baron, A.; Molteni, P., Nature of pressure waves induced by a high-speed train travelling through a tunnel, J Wind Eng Ind Aerodyn, 95, 8, 781-808, 2007
[82] US Department of Transportation, P., Aerodynamic assessment and mitigation – design considerations for high-speed rail, 2022
[83] Vincenti, W. G.; Kruger, C. H., introduction to physical gas dynamics, 1965, John Wiley, London
[84] Saad, M. A., compressible fluid flow, 1985, Prentice-Hall Inc.
[85] Jang, K. S.; Le, T. T.G.; Kim, J.; Lee, K. S.; Ryu, J., Effects of compressible flow phenomena on aerodynamic characteristics in hyperloop system, Aerosp Sci Technol, 117, Article 106970 pp., 2021
[86] Anderson, J. D., Fundamentals of aerodynamics, 2016, McGraw-Hill
[87] Sui, Y.; Niu, J.; Yuan, Y.; Yu, Q.; Cao, X.; Wu, D., An aerothermal study of influence of blockage ratio on a supersonic tube train system, J Thermal Sci, 29, 1-12, 2020
[88] Naca, Y., Equations, tables, and charts for compressible flow, 1953, NACA-TR-1135
[89] Van Wie, D. M.; Kwok, F. T.; Walsh, R. F., Starting characteristics of supersonic inlets, 32nd Joint propulsion conference and exhibit, 1996, American Institute of Aeronautics and Astronautics Inc, AIAA
[90] Kantrowitz, A.; Donaldson, C. D., Preliminary investigation of supersonic diffusersTechnical report, 1945, NACA-ACR-L5D20
[91] Hou, Z.; Zhu, Y.; Bo, J., A quasi-one-dimensional study on global characteristics of tube train flows, Phys Fluids, 34, 26104, 2022
[92] Zhou, Z.; Xia, C.; Du, X.; Shan, X.; Yang, Z., Impact of the isentropic and kantrowitz limits on the aerodynamics of an evacuated tube transportation system, Phys Fluids, 34, 6, Article 066103 pp., 2022
[93] Zvegintsev, V. I.; Morozov, S. O.; Nalivaychenko, D. G., Gas dynamics of the uniform body acceleration in the channel, (AIP conference proceedings, vol. 2027, no. 030012, 2018, American Institute of Physics Inc.)
[94] Janić, M., Estimation of direct energy consumption and CO2 emission by high speed rail, transrapid maglev and hyperloop passenger transport systems, Int J Sustain Transp, 15, 9, 696-717, 2021
[95] John, J. E.A.; Keith, T., Gas dynamics, 1969, Pearson
[96] Li, T.; Song, J.; Zhang, X.; Zhang, J.; Zhang, W., Theoretical and numerical studies on compressible flow around a subsonic evacuated tube train, Proc Inst Mech Eng C, 236, 15, 8261-8271, 2022
[97] Hammitt, A. G., Aerodynamic analysis of tube vehicle systems, AIAA J, 10, 3, 282-290, 1972 · Zbl 0239.76011
[98] Woods, W. A.; Pope, C. W., A generalised flow prediction method for the unsteady flow generated by a train in a single-track tunnel, J Wind Eng Ind Aerodyn, 7, 3, 331-360, 1981
[99] Vardy, A. E., Aerodynamic drag on trains in tunnels. Part 2. Prediction and validation, Proc Inst Mech Eng F, 210, 1, 39-49, 1996
[100] Dundee Tunnel Research, A. E., ThermoTun, 2023, URL https://thermotun.com/. [Accessed: 27 September 2023]
[101] Shapiro, A. H., The dynamics and thermodynamics of compressible fluid flow (volume 2), 1954, Ronald Press Company · Zbl 0058.19703
[102] Abdulla, M.; Juhany, K. A., A rapid solver for the prediction of flow-field of high-speed vehicle moving in a tube, Energies, 15, 16, 6074, 2022
[103] Baron, A.; Mossi, M.; Sibilla, S., The alleviation of the aerodynamic drag and wave effects of high-speed trains in very long tunnels, J Wind Eng Ind Aerodyn, 89, 5, 365-401, 2001
[104] Vardy AE. On the method of characteristics in highly compressible flows. In: Proceedings of the 14th international conference on pressure surges. 2023.
[105] Jameson, A.; Schmidt, W.; Turkel, E., Numerical solution of the Euler equations by finite volume methods using runge kutta time stepping schemes, (14th Fluid and plasma dynamics conference, 1981, American Institute of Aeronautics and Astronautics: American Institute of Aeronautics and Astronautics Reston, Virigina)
[106] Vardy, A. E., High-speed vehicles in low-pressure tunnels—Influence of choked flows, Appl Sci, 13, 18, 10314, 2023
[107] Menter, F. R., Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J, 32, 8, 1598-1605, 1994
[108] Menter, F. R.; Smirnov, P. E.; Liu, T.; Avancha, R., A one-equation local correlation-based transition model, Flow Turbul Combust, 95, 583-619, 2015
[109] Langtry, R. B.; Menter, F. R.; Likki, S. R.; Suzen, Y. B.; Huang, P. G.; Völker, S., A correlation-based transition model using local variables—Part II: Test cases and industrial applications, J Turbomach, 128, 3, 423-434, 2006
[110] Menter, F. R.; Langtry, R.; Völker, S.; Völker, S., Transition modelling for general purpose CFD codes, Flow Turbul Combust, 77, 1, 277-303, 2006 · Zbl 1134.76352
[111] Menter, F. R., Review of the shear-stress transport turbulence model experience from an industrial perspective, Int J Comput Fluid Dyn, 23, 4, 305-316, 2009 · Zbl 1184.76681
[112] Pope, S. B., Turbulent flows, 2000, Cambridge University Press · Zbl 0966.76002
[113] Wilcox, D. C., Turbulence modeling for CFD, 522, 2006, DCW Industries, Inc.
[114] Menter, F. R.; Langtry, R. B.; Likki, S. R.; Suzen, Y. B.; Huang, P. G.; Völker, S., A correlation-based transition model using local variables—Part I: Model formulation, J Turbomach, 128, 3, 413-422, 2006
[115] Walters, D. K.; Cokljat, D., A three-equation Eddy-Viscosity model for Reynolds-averaged Navier-Stokes simulations of transitional flow, J Fluids Eng, 130, 12, 2008
[116] van Ingen, J., A suggested semi-empirical method for the calculation of the boundary layer transition region, 1956, Technische Hogeschool Delft, Vliegtuigbouwkunde, Report VTH-74
[117] Smith, A. M.O.; Gamberoni, N., Transition, Pressure gradient and stability theoryTechnical report ES-26388, 1956, Douglas Aircraft Company
[118] Drela, M., XFOIL: An analysis and design system for low Reynolds number airfoils, (Low Reynolds number aerodynamics, proceedings of the conference notre dame, Indiana, USA, 5-7 June, 1989, Springer, Berlin, Heidelberg), 1-12
[119] Langtry, R. B.; Menter, F. R., Transition modeling for general CFD applications in aeronautics, (43rd AIAA aerospace sciences meeting and exhibit, 2005), 15513-15526
[120] Zhou, P.; Qin, D.; Zhang, J.; Li, T., Aerodynamic characteristics of the evacuated tube maglev train considering the suspension gap, Int J Rail Transp, 2021
[121] Spalart, P. R., Detached-eddy simulation, Annu Rev Fluid Mech, 41, 1, 181-202, 2009 · Zbl 1159.76036
[122] Zhong, S.; Qian, B.; Yang, M.; Wu, F.; Wang, T.; Tan, C., Investigation on flow field structure and aerodynamic load in vacuum tube transportation system, J Wind Eng Ind Aerodyn, 215, 2021
[123] Hu, X.; Deng, Z.; Zhang, J.; Zhang, W., Aerodynamic behaviors in supersonic evacuated tube transportation with different train nose lengths, Int J Heat Mass Transfer, 183, 2022
[124] Niu, J.; Sui, Y.; Yu, Q.; Cao, X.; Yuan, Y.; Yang, X., Comparative numerical study of aerodynamic heating and performance of transonic hyperloop pods with different noses, Case Stud Therm Eng, 29, 2022
[125] Niu, J.; Sui, Y.; Yu, Q.; Cao, X.; Yuan, Y., Numerical study on the impact of mach number on the coupling effect of aerodynamic heating and aerodynamic pressure caused by a tube train, J Wind Eng Ind Aerodyn, 190, 100-111, 2019
[126] Hu, X.; Deng, Z.; Zhang, J.; Zhang, W., Effect of tracks on the flow and heat transfer of supersonic evacuated tube maglev transportation, J Fluids Struct, 107, 2021
[127] Yu, Q.; Yang, X.; Niu, J.; Sui, Y.; Du, Y.; Yuan, Y., Theoretical and numerical study of choking mechanism of fluid flow in hyperloop system, Aerosp Sci Technol, 121, Article 107367 pp., 2022
[128] Zhou, K.; Ding, G.; Wang, Y.; Niu, J., Aeroheating and aerodynamic performance of a transonic hyperloop pod with radial gap and axial channel: A contrastive study, J Wind Eng Ind Aerodyn, 212, Article 104591 pp., 2021
[129] Moukalled, F.; Mangani, L.; Darwish, M., The characteristic boundary condition in pressure-based methods, Numer Heat Transfer B, 76, 2, 43-59, 2019
[130] Kwon, H. B.; Park, Y. W.; Lee, D. H.; Kim, M. S., Wind tunnel experiments on Korean high-speed trains using various ground simulation techniques, J Wind Eng Ind Aerodyn, 89, 13, 1179-1195, 2001
[131] Stine HA, Wanlass K, Field M, Washington C. Theoretical and experimental investigation of aerodynamic-heating and isothermal heat-transfer parameters on a hemispherical nose with laminar boundary layer at supersonic mach numbers. NACA technical note 3344, 1954.
[132] Kim, H.; Oh, S., Shape optimization of a hyperloop pod’s head and tail using a multi-resolution morphing method, Int J Mech Sci, 223, Article 107227 pp., 2022
[133] Sui, Y.; Niu, J.; Ricco, P.; Yuan, Y.; Yu, Q.; Cao, X., Impact of vacuum degree on the aerodynamics of a high-speed train capsule running in a tube, Int J Heat Fluid Flow, 88, Article 108752 pp., 2021
[134] Guerra, R.; Waidmann, W.; Laible, C., An experimental investigation of the combustion of a hydrogen jet injected parallel in a supersonic air stream, AIAA 3rd international aerospace planes conference, 1991, 1991, American Institute of Aeronautics and Astronautics Inc, AIAA
[135] Waidmann, W.; Alff, F.; Brummund, U.; Clauss, W.; Oschwald, M.; Sender, J., Experimental investigation of the combustion process in a supersonic combustion ramjet (SCRAMJET) combustion chamber, (Deutscher luft- und raumfahrtkongress, DGLR-jahrestagung, 1994)
[136] Niu, J.; Sui, Y.; Yu, Q.; Cao, X.; Yuan, Y.; Yang, X., Effect of acceleration and deceleration of a capsule train running at transonic speed on the flow and heat transfer in the tube, Aerosp Sci Technol, 105, Article 105977 pp., 2020
[137] Li, N.; Chang, J. T.; Xu, K. J.; Yu, D. R.; Bao, W.; Song, Y. P., Prediction dynamic model of shock train with complex background waves, Phys Fluids, 29, 11, Article 116103 pp., 2017
[138] Le, T. T.G.; Kim, J.; Cho, M.; Ryu, J., Effects of tail shapes/lengths of hyperloop pod on aerodynamic characteristics and wave phenomenon, Aerosp Sci Technol, 131, Article 107962 pp., 2022
[139] Reinartz, B. U.; Herrmann, C. D.; Ballmann, J.; Koschel, W. W., Aerodynamic performance analysis of a hypersonic inlet isolator using computation and experiment, J Propuls Power, 19, 5, 868-875, 2003
[140] Herrmann, C. D.; Koschel, W. W., Experimental investigation of the internal compression of a hypersonic intake, (38th AIAA/aSME/SAE/ASEE joint propulsion conference and exhibit, 2002)
[141] Yu, Q.; Yang, X.; Niu, J.; Sui, Y.; Du, Y.; Yuan, Y., Aerodynamic thermal environment around transonic tube train in choked/unchoked flow, Int J Heat Fluid Flow, 92, Article 108890 pp., 2021
[142] Hu, X.; Deng, Z.; Zhang, W., Effect of cross passage on aerodynamic characteristics of super-high-speed evacuated tube transportation, J Wind Eng Ind Aerodyn, 211, 2021
[143] Gao, T.; Liang, J.; Sun, M.; Zhao, Y., Analysis of separation modes variation in a scramjet combustor with single-side expansion, AIAA J, 55, 4, 1307-1317, 2017
[144] Gao, T.; Liang, J.; Sun, M., Symmetric/asymmetric separation transition in a supersonic combustor with single-side expansion, Phys Fluids, 29, 12, Article 126102 pp., 2017
[145] Kayser, L. D.; Whiton, F., Surface pressure measurements on a boattailed projectile shape at transonic speedsTechnical report, 1982, US Army Armament Research And Development Command ARBRL-MR-03161
[146] Seo, Y.; Cho, M.; Kim, D. H.; Lee, T.; Ryu, J.; Lee, C., Experimental analysis of aerodynamic characteristics in the hyperloop system, Aerosp Sci Technol, Article 108265 pp., 2023
[147] Hruschka, R.; Klatt, D., In-pipe aerodynamic characteristics of a projectile in comparison with free flight for transonic mach numbers, Shock Waves, 29, 2, 297-306, 2019
[148] Kim, J.; Jang, K. S.; Le, T. T.G.; Lee, K.-S.; Ryu, J., Theoretical and numerical analysis of pressure waves and aerodynamic characteristics in hyperloop system under cracked-tube conditions, Aerosp Sci Technol, 123, Article 107458 pp., 2022
[149] Zhou, P.; Zhang, J.; Li, T.; Zhang, W., Numerical study on wave phenomena produced by the super high-speed evacuated tube maglev train, J Wind Eng Ind Aerodyn, 190, 61-70, 2019
[150] Zhou, Z.; Xia, C.; Shan, X.; Yang, Z., Numerical study on the aerodynamics of the evacuated tube transportation system from subsonic to supersonic, Energies, 15, 9, 3098, 2022
[151] Lluesma-Rodríguez, F.; González, T.; Hoyas, S., CFD simulation of a hyperloop capsule inside a closed environment, Results Eng, 9, 2021
[152] Ma, T.; Hu, X.; Wang, J.; Rao, Y.; Zheng, J.; Deng, Z., Effect of air pressure on aerodynamic characteristics of the hts maglev running in a tube, IEEE Trans Appl Supercond, 31, 8, 2021
[153] Bi, H.; Wang, Z.; Wang, H.; Zhou, Y., Aerodynamic phenomena and drag of a maglev train running dynamically in a vacuum tube, Phys Fluids, 34, 9, Article 096111 pp., 2022
[154] Le, T. T.G.; Kim, J.; Jang, K. S.; Lee, K. S.; Ryu, J., Numerical study on the influence of the nose and tail shape on the aerodynamic characteristics of a hyperloop pod, Aerosp Sci Technol, 121, Article 107362 pp., 2022
[155] Zhang, X.; Jiang, Y.; Li, T., Effect of streamlined nose length on the aerodynamic performance of a 800 km/h evacuated tube train, Fluid Dyn Mater Process, 16, 1, 67-76, 2020
[156] Wang, P.; Zhang, Y.; Liu, Y.; Wang, J.; Hu, X.; Zheng, J., Effects of tube structure on the aerodynamic characteristics of evacuated tube transport system, IEEE Trans Appl Supercond, 31, 8, 2021
[157] Queipo, N. V.; Haftka, R. T.; Shyy, W.; Goel, T.; Vaidyanathan, R.; Kevin Tucker, P., Surrogate-based analysis and optimization, Prog Aerosp Sci, 41, 1, 1-28, 2005
[158] Obayashi, S.; Tsukahara, T., Comparison of optimization algorithms for aerodynamic shape design, AIAA J, 35, 8, 1413-1415, 1997
[159] Muñoz-Paniagua, J.; García, J.; Crespo, A., Genetically aerodynamic optimization of the nose shape of a high-speed train entering a tunnel, J Wind Eng Ind Aerodyn, 130, 48-61, 2014
[160] Rogalsky, T.; Kocabiyik, S.; Derksen, R. W., Differential evolution in aerodynamic optimization, Can Aeronaut Space J, 46, 4, 183-190, 2000
[161] Gilkeson, C.; Toropov, V.; Thompson, H.; Wilson, M.; Foxley, N.; Gaskell, P., Dealing with numerical noise in CFD-based design optimization, Comput & Fluids, 94, 84-97, 2014
[162] Toropov V, Schramm U, Sahai A, Jones R, Zeguer T. Design Optimization and Stochastic Analysis based on the Moving Least Squares Method. In: 6th World Congresses of Structural and Multidisciplinary Optimization. 2005.
[163] Choi KK, Youn BD, Yang R-J. Moving least square method for reliability-based design optimization. In: 4th world congress of structural and multidisciplinary optimization. 2001.
[164] Wang, S.; Wang, R.; Xia, Y.; Sun, Z.; You, L.; Zhang, J., Multi-objective aerodynamic optimization of high-speed train heads based on the PDE parametric modeling, Struct Multidiscipl Optim, 2021, 1-20, 2021
[165] Shuanbao, Y.; Dilong, G.; Zhenxu, S.; Guowei, Y.; Dawei, C., Optimization design for aerodynamic elements of high speed trains, Comput & Fluids, 95, 56-73, 2014
[166] Suzuki, M.; Nakade, K., Multi-objective design optimization of high-speed train nose, J Mech Syst Transp Logist, 6, 1, 54-64, 2013
[167] Evans, B.; Morton, T.; Sheridan, L.; Hassan, O.; Morgan, K.; Jones, J. W., Design optimisation using computational fluid dynamics applied to a land-based supersonic vehicle, the BLOODHOUND SSC, Struct Multidiscip Optim, 47, 2, 301-316, 2013
[168] Townsend, J.; Evans, B.; Tudor, T., Aerodynamic optimisation of the rear wheel fairing of the land speed record vehicle BLOODHOUND SSC, Aeronaut J, 120, 1228, 930-955, 2016
[169] Uddin, M. R.; Saniat, T. S.; Salehin, S.; Rahman, M. H., Drag-based aerodynamic braking system for the hyperloop: a numerical study, Trans Canadian Soc Mech Eng, 45, 1, 1-10, 2021
[170] Evans, B.; Townsend, J.; Hassan, O.; Morgan, K.; Ayers, R.; Chapman, M., On the subsonic and low transonic aerodynamic performance of the land speed record car, bloodhound LSR, Proc Inst Mech Eng G, 236, 9, 1895-1921, 2022
[171] Noble, R., Thrust 2: a memory, 2022, Amberley Publishing
[172] SpaceX, R., Spacex hyperloop test-track specification, 2016, URL https://aviation.report/whitepapers/spacex-hyperloop-test-track-specification. [Accessed: 17 September 2021]
[173] Dong, T.; Minelli, G.; Wang, J.; Liang, X.; Krajnović, S., The effect of ground clearance on the aerodynamics of a generic high-speed train, J Fluids Struct, 95, Article 102990 pp., 2020
[174] Doig, G.; Wang, S.; Kleine, H.; Young, J., Aerodynamic analysis of projectiles in ground effect at near-sonic mach numbers, AIAA J, 54, 1, 150-160, 2016
[175] Doig, G., Transonic and supersonic ground effect aerodynamics, Prog Aerosp Sci, 69, 1-28, 2014
[176] Le, T. T.G.; Kim, J.; Jang, K. S.; Lee, K. S.; Ryu, J., Numerical study of unsteady compressible flow induced by multiple pods operating in the hyperloop system, J Wind Eng Ind Aerodyn, 226, 2022
[177] Mirza, M. O.; Ali, Z., Numerical analysis of aerodynamic characteristics of multi-pod hyperloop system, Proc Inst Mech Eng G, 2022
[178] Törnell, J.; Sebben, S.; Elofsson, P., Experimental investigation of a two-truck platoon considering inter-vehicle distance, lateral offset and yaw, J Wind Eng Ind Aerodyn, 213, Article 104596 pp., 2021
[179] Schito, P.; braghin, F., Numerical and experimental investigation on vehicles in platoon, SAE Int J Commercial Veh, 5, 1, 63-71, 2012
[180] Jia, W.; Wang, K.; Cheng, A.; Kong, X.; Cao, X.; Li, Q., Air flow and differential pressure characteristics in the vacuum tube transportation system based on pressure recycle ducts, Vacuum, 150, 58-68, 2018
[181] Jia, W.; Zhang, K.; Wang, C.; Yan, J.; Liu, Z.; Li, Q., Study on the influence of HRD on aerodynamic heat diffusion of VTT system under different blocking ratios, Vacuum, 179, 2020
[182] Lluesma-Rodríguez, F.; González, T.; Hoyas, S., CFD simulation of a hyperloop capsule inside a low-pressure environment using an aerodynamic compressor as propulsion and drag reduction method, Appl Sci, 11, 9, 2021
[183] Ahn, J.; Kim, B.; Kim, J.; Kwon, H.; Cho, W., Characteristics of a flow field generated by a breach on an evacuated tube, Int J Aeronaut Space Sci, 23, 5, 848-858, 2022
[184] Donaldson, C. D.; Snedeker, R. S., A study of free jet impingement. Part 1. Mean properties of free and impinging jets, J Fluid Mech, 45, 2, 281-319, 1971
[185] Vuorinen, V.; Yu, J.; Tirunagari, S.; Kaario, O.; Larmi, M.; Duwig, C., Large-eddy simulation of highly underexpanded transient gas jets, Phys Fluids, 25, 1, Article 016101 pp., 2013
[186] Ackroyd, J., Thrust 2 - design of the world land speed record car, Proc Inst Mech Eng. D, 199, 4, 239-264, 1985
[187] Bao, S.; Hu, X.; Wang, J.; Ma, T.; Rao, Y.; Deng, Z., Numerical study on the influence of initial ambient temperature on the aerodynamic heating in the tube train system, Adv Aerodyn, 2, 1, 2020
[188] Zhou, P.; Zhang, J., Aerothermal mechanisms induced by the super high-speed evacuated tube maglev train, Vacuum, 173, 2020
[189] Wang, J.; Bao, S.; Hu, X.; Li, H.; Deng, Z., Numerical study on the influence of the speed on the aerodynamic thermal in the HTS maglev-evacuated tube transport system, IEEE Trans Appl Supercond, 31, 8, 2021
[190] National Research Council, J., Accelerated aging of materials and structures: the effects of long-term elevated-temperature exposure, 1999, The National Academies Press: The National Academies Press Washington DC
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.