×

Conservative discontinuous Galerkin interpolation: sheared boundary conditions. (English) Zbl 07833767

Summary: Local studies of accretion disks and laboratory magnetized plasmas employ analytical coordinate mappings that introduce sheared boundary conditions (BCs). We present a discontinuous Galerkin (DG) algorithm to apply such BCs based on projections and quadrature-free integration. The procedure is high-order accurate, preserves moments exactly and works in multiple dimensions. Tests of increasing complexity are provided, beginning with translations of one and two dimensional fields, followed by 3D and 5D simulations with sheared (twist-shift) BCs. Results show that the algorithm is \((p + 1)\)-order accurate in the DG representation and \((p + 2)\)-order accurate in the cell averages, with \(p\) being the order of the polynomial basis. Quantification of the algorithm’s hyperdiffusion and discussion of aliasing errors are given. This technique enables conservative local simulations of plasma turbulence with DG, not possible until now.

MSC:

76-XX Fluid mechanics
65-XX Numerical analysis

Software:

Gkeyll; gs2; GRILLIX; Maxima
Full Text: DOI

References:

[1] Hawley, J. F.; Gammie, C. F.; Balbus, S. A., Local three-dimensional magnetohydrodynamic simulations of accretion disks, Astrophys. J., 440, 742, 1995
[2] Sano, T.; Inutsuka, S.-ichiro; Miyama, S. M., A saturation mechanism of magnetorotational instability due to ohmic dissipation, Astrophys. J., 506, 1, L57, 1998 · doi:10.1086/311635
[3] Rempel, E. L.; Lesur, G.; Proctor, M. R.E., Supertransient magnetohydrodynamic turbulence in Keplerian shear flows, Phys. Rev. Lett., 105, Article 044501 pp., 2010
[4] Bacchini, F.; Arzamasskiy, L.; Zhdankin, V.; Werner, G. R.; Begelman, M. C.; Uzdensky, D. A., Fully kinetic shearing-box simulations of magnetorotational turbulence in 2D and 3D. I. pair plasmas, Astrophys. J., 938, 1, 86, 2022 · doi:10.3847/1538-4357/ac8a94
[5] Hammett, G. W.; Beer, M. A.; Dorland, W.; Cowley, S. C.; Smith, S. A., Developments in the gyrofluid approach to tokamak turbulence simulations, Plasma Phys. Control. Fusion, 35, 8, 973-985, 1993
[6] Beer, M. A.; Cowley, S. C.; Hammett, G. W., Field-aligned coordinates for nonlinear simulations of tokamak turbulence, Phys. Plasmas, 2, 7, 2687-2700, 1995
[7] Beer, M. A.; Hammett, G. W., Toroidal gyrofluid equations for simulations of tokamak turbulence, Phys. Plasmas, 3, 11, 4046-4064, 1996
[8] Zeiler, A.; Biskamp, D.; Drake, J. F.; Guzdar, P. N., Three-dimensional fluid simulations of tokamak edge turbulence, Phys. Plasmas, 3, 8, 2951-2960, 1996
[9] Dorland, W.; Jenko, F.; Kotschenreuther, M.; Rogers, B. N., Electron temperature gradient turbulence, Phys. Rev. Lett., 85, 5579-5582, 2000
[10] Candy, J.; Waltz, R. E., An Eulerian gyrokinetic-Maxwell solver, J. Comput. Phys., 186, 2, 545-581, 2003 · Zbl 1072.82554
[11] Candy, J.; Belli, E.; Bravenec, R., A high-accuracy Eulerian gyrokinetic solver for collisional plasmas, J. Comput. Phys., 324, 73-93, 2016 · Zbl 1360.82087
[12] Jenko, F.; Dorland, W.; Kotschenreuther, M.; Rogers, B. N., Electron temperature gradient driven turbulence, Phys. Plasmas, 7, 5, 1904-1910, 2000
[13] Watanabe, T.-H.; Sugama, H., Velocity-space structures of distribution function in toroidal ion temperature gradient turbulence, Nucl. Fusion, 46, 1, 24-32, 2005
[14] Parker, S. E.; Chen, Y.; Wan, W.; Cohen, B. I.; Nevins, W. M., Electromagnetic gyrokinetic simulations, Phys. Plasmas, 11, 5, 2594-2599, 2004
[15] Xiao, Y.; Holod, I.; Wang, Z.; Lin, Z.; Zhang, T., Gyrokinetic particle simulation of microturbulence for general magnetic geometry and experimental profiles, Phys. Plasmas, 22, 2, Article 022516 pp., 2015
[16] Wang, W. X.; Lin, Z.; Tang, W. M.; Lee, W. W.; Ethier, S.; Lewandowski, J. L.V.; Rewoldt, G.; Hahm, T. S.; Manickam, J., Gyro-kinetic simulation of global turbulent transport properties in tokamak experiments, Phys. Plasmas, 13, 9, Article 092505 pp., 2006
[17] Karniadakis, G.; Sherwin, S., Spectral/hp Element Methods for CFD, Numerical Mathematics and Scientific Computation, 1999, Oxford University Press · Zbl 0954.76001
[18] Hariri, F.; Ottaviani, M., A flux-coordinate independent field-aligned approach to plasma turbulence simulations, Comput. Phys. Commun., 184, 11, 2419-2429, 2013 · Zbl 1349.76918
[19] Zhu, B.; Francisquez, M.; Rogers, B. N., GDB: a global 3D two-fluid model of plasma turbulence and transport in the tokamak edge, Comput. Phys. Commun., 232, 46-58, 2018 · Zbl 07694787
[20] Stegmeir, A.; Coster, D.; Ross, A.; Maj, O.; Lackner, K.; Poli, E., GRILLIX: a 3d turbulence code based on the flux-coordinate independent approach, Plasma Phys. Control. Fusion, 60, 3, Article 035005 pp., 2018
[21] Dorf, M.; Dorr, M., Continuum kinetic modelling of cross-separatrix plasma transport in a tokamak edge including self-consistent electric fields, Contrib. Plasma Phys., 58, 6-8, 434-444, 2018
[22] Lockard, D.; Atkins, H., Efficient Implementations of the Quadrature-Free Discontinuous Galerkin Method, 526-536, 1999
[23] Ball, J.; Brunner, S., A non-twisting flux tube for local gyrokinetic simulations, Plasma Phys. Control. Fusion, 63, 6, Article 064008 pp., 2021
[24] Lapillonne, X.; Brunner, S.; Dannert, T.; Jolliet, S.; Marinoni, A.; Villard, L.; Görler, T.; Jenko, F.; Merz, F., Clarifications to the limitations of the \(s - \alpha\) equilibrium model for gyrokinetic computations of turbulence, Phys. Plasmas, 16, 3, Article 032308 pp., 2009
[25] Mandell, N., Magnetic fluctuations in gyrokinetic simulations of tokamak scrape-off layer turbulence, 2021
[26] Maxima, A computer algebra system, 2021
[27] The Gkeyll team, The Gkeyll code, 2021
[28] Arnold, D. N.; Awanou, G., The serendipity family of finite elements, Found. Comput. Math., 11, 3, 337-344, 2011 · Zbl 1218.65125
[29] Hakim, A. H.; Mandell, N. R.; Bernard, T. N.; Francisquez, M.; Hammett, G. W.; Shi, E. L., Continuum electromagnetic gyrokinetic simulations of turbulence in the tokamak scrape-off layer and laboratory devices, Phys. Plasmas, 27, 4, Article 042304 pp., 2020
[30] Mandell, N. R.; Hakim, A.; Hammett, G. W.; Francisquez, M., Electromagnetic full-f gyrokinetics in the tokamak edge with discontinuous Galerkin methods, J. Plasma Phys., 86, 1, Article 905860109 pp., 2020
[31] Xu, W.; Stone, J. M., Bondi-Hoyle-Lyttleton accretion in supergiant X-ray binaries: stability and disc formation, Mon. Not. R. Astron. Soc., 488, 4, 5162-5184, 2019
[32] Görler, T.; Tronko, N.; Hornsby, W. A.; Bottino, A.; Kleiber, R.; Norscini, C.; Grandgirard, V.; Jenko, F.; Sonnendrücker, E., Intercode comparison of gyrokinetic global electromagnetic modes, Phys. Plasmas, 23, 7, Article 072503 pp., 2016
[33] Kotschenreuther, M.; Rewoldt, G.; Tang, W. M., Comparison of initial value and eigenvalue codes for kinetic toroidal plasma instabilities, Comput. Phys. Commun., 88, 2-3, 128-140, 1995 · Zbl 0923.76198
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.