×

A variant of the Nagell-Ljunggren superelliptic equation. (English) Zbl 07833716

Summary: In this note we study the finiteness of solutions of the exponential Diophantine equation \[ \left(\frac{x^d-1}{x-1}\right)^2-\frac{x^d(x^{d-1}-1)}{x-1}=y^m \] in rational integers \(x\), \(y\), \(d\ge 1\) and \(m\ge 2\).

MSC:

11D61 Exponential Diophantine equations
Full Text: DOI

References:

[1] Bagchi, Bhaskar, Parametric restrictions on quasi-symmetric designs, European Journal of Combinatorics, 99, 103434, 1-22 (2022) · Zbl 1476.05019
[2] Baker, A., Bounds for the solutions of hyperelliptic equation, Proc. Camb. Phil. Soc., 65, 439-444 (1969) · Zbl 0174.33803 · doi:10.1017/S0305004100044418
[3] A. Baker, Transcendental Number Theory, Cambridge University Press (2nd edn 1979). · Zbl 0297.10013
[4] M. A. Bennett and A. Levin, The Nagell-Ljunggren equation via Runge’s method, Monatsh Math 177 (2015), 15-31. doi:10.1007/s00605-015-0748-1. · Zbl 1395.11060
[5] Bridy, A.; Oliver, RJL; Shallit, A.; Shallit, J., The generalized Nagell-Ljunggren Problem: Powers with Repetitive Representations, Experimental Mathematics, 28, 4, 428-439 (2019) · Zbl 1475.11050 · doi:10.1080/10586458.2017.1419391
[6] Y. Bugeaud and M. Mignotte, L’equation de Nagell-Ljunggren \(\frac{x^n-1}{x-1}=y^q,\) Enseign.Math. 48 (2002), 147-168. · Zbl 1040.11015
[7] W. Ljunggren, Noen setninger om ubestemte likninger av formen \(\frac{x^n-1}{x-1}=y^q,\) Norsk. Mat. Tidsskrift, 25 (1943), 17-20 ; Collected Papers of W. Ljunggren edited by P. Riebenboim, Volume 1, \(\# 14\), p. 363-366.
[8] Ljunggren, W., On the irreducibility of certain trinomials and quadrinomials, Math. Scand., 8, 65-70 (1960) · Zbl 0095.01305 · doi:10.7146/math.scand.a-10593
[9] Schinzel, A.; Tijdeman, R., On the equation \(y^m=P(x)\), Acta Arith., 31, 199-204 (1976) · Zbl 0303.10016 · doi:10.4064/aa-31-2-199-204
[10] T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge University Press (1986). · Zbl 0606.10011
[11] T. N. Shorey, Exponential diophantine equations involving products of consecutive integers and related equations, Number Theory ed. by R. P. Bambah, V. C. Dumir and R. J. HansGill, Hindustan Book Agency (1999), 463-495. · Zbl 0958.11026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.