×

A hybrid level-based learning swarm algorithm with mutation operator for solving large-scale cardinality-constrained portfolio optimization problems. (English) Zbl 07832110

Summary: We propose a hybrid variant of the level-based learning swarm optimizer (LLSO) for solving large-scale portfolio optimization problems. This solver fills the gap due to the inadequacy of the particle swarm optimization algorithm for high-dimensional instances. We aim to extend the classical mean-variance formulation by maximizing a modified version of the Sharpe ratio subject to cardinality, box, and budget constraints. The algorithm involves a projection operator to deal with these three constraints simultaneously. Further, we implicitly control transaction costs thanks to a rebalancing constraint handled by a suitable exact penalty function. In addition, we develop an ad hoc mutation operator to modify candidate exemplars in the highest level of the swarm. The experimental results, using three large-scale data sets, show that including this procedure improves the accuracy of the solutions. Then, a comparison with other variants of the LLSO algorithm and two state-of-the-art swarm optimizers points out the outstanding performance of the proposed solver in terms of exploration capabilities and solution quality. Finally, we assess the profitability of the portfolio allocation strategy in the last five years using an investable pool of 1119 constituents from the MSCI World Index.

MSC:

90C30 Nonlinear programming
90C59 Approximation methods and heuristics in mathematical programming
91G10 Portfolio theory

References:

[1] Auer, B. R.; Schuhmacher, F., Performance hypothesis testing with the Sharpe ratio: the case of hedge funds, Finance Res. Lett., 10, 4, 196-208 (2013)
[2] Barbosa, H. J.C.; Lemonge, A. C.C.; Bernardino, H. S., A critical review of adaptive penalty techniques in evolutionary computation, (Evolutionary Constrained Optimization. Evolutionary Constrained Optimization, Infosys Science Foundation Series (2015), Springer: Springer New Delhi) · Zbl 1321.90010
[3] Beck, A., First-Order Methods in Optimization (2017), Society for Industrial and Applied Mathematics and Mathematical Optimization Society: Society for Industrial and Applied Mathematics and Mathematical Optimization Society Philadelphia · Zbl 1384.65033
[4] Beraldi, P.; Violi, A.; Ferrara, M.; Ciancio, C.; Pansera, B. A., Dealing with complex transaction costs in portfolio management, Ann. Oper. Res., 299, 1-2, 7-22 (2021) · Zbl 1480.91262
[5] Bertsimas, D.; Cory-Wright, R., A scalable algorithm for sparse portfolio selection, INFORMS J. Comput., 34, 3, 1489-1511 (2022) · Zbl 07552219
[6] Bertsimas, D.; Shioda, R., Algorithm for cardinality-constrained quadratic optimization, Comput. Optim. Appl., 43, 1, 1-22 (2009) · Zbl 1178.90262
[7] Caraffini, F.; Neri, F.; Epitropakis, M., HyperSPAM: a study on hyper-heuristic coordination strategies in the continuous domain, Inf. Sci., 477, 186-202 (2019)
[8] Canakgoz, N. A.; Beasley, J. E., Mixed-integer programming approaches for index tracking and enhanced indexation, Eur. J. Oper. Res., 196, 1, 384-399 (2009) · Zbl 1159.91464
[9] Caporin, M.; Jannin, G.; Lisi, F.; Maillet, B., A survey on the four families of performance measures, J. Econ. Surv., 28, 5, 917-942 (2014)
[10] Cheng, R.; Jin, Y., A competitive swarm optimizer for large scale optimization, IEEE Trans. Cybern., 45, 2, 191-204 (2015)
[11] Cheng, R.; Jin, Y., A social learning particle swarm optimization algorithm for scalable optimization, Inf. Sci., 291, 43-60 (2015) · Zbl 1355.90108
[12] Corazza, M.; di Tollo, G.; Fasano, G.; Pesenti, R., A novel hybrid PSO-based metaheuristic for costly portfolio selection problems, Ann. Oper. Res., 304, 109-137 (2021) · Zbl 1480.90200
[13] Costa, M. F.P.; Francisco, R. B.; Rocha, A. M.A. C.; Fernandes, E. M.G. P., Theoretical and practical convergence of a self-adaptive penalty algorithm for constrained global optimization, J. Optim. Theory Appl., 174, 875-893 (2017) · Zbl 1373.90145
[14] Crama, Y.; Schyns, M., Simulated annealing for complex portfolio selection problems, Eur. J. Oper. Res., 150, 3, 546-571 (2003) · Zbl 1046.91057
[15] Cura, T., Particle swarm optimization approach to portfolio optimization, Nonlinear Anal., Real World Appl., 10, 4, 2396-2406 (2009) · Zbl 1163.90669
[16] Das, R.; Prasad, D. K., Prediction of porosity and thermal diffusivity in a porous fin using differential evolution algorithm, Swarm Evol. Comput., 23, 27-39 (2015)
[17] Datta, R.; Deb, K., Evolutionary Constrained Optimization, Infosys Science Foundation Series (2015), Springer: Springer New Delhi · Zbl 1321.90010
[18] Ertenlice, O.; Kalayci, C. B., A survey of swarm intelligence for portfolio optimization: algorithms and applications, Swarm Evol. Comput., 39, 36-52 (2018)
[19] Guerard, J. B., Handbook of Portfolio Construction. Contemporary Applications of Markowitz Techniques (2010), Springer: Springer New York · Zbl 1192.91001
[20] Ho, Y. C.; Pepyne, D. L., Simple explanation of the no free lunch theorem of optimization, Cybern. Syst. Anal., 38, 2, 292-298 (2002) · Zbl 1033.90079
[21] Israelsen, C., A refinement to the Sharpe ratio and information ratio, J. Asset Manag., 5, 423-427 (2005)
[22] Kaucic, M., Equity portfolio management with cardinality constraints and risk parity control using multi-objective particle swarm optimization, Comput. Oper. Res., 109, 300-316 (2019) · Zbl 1458.91195
[23] Kaucic, M.; Barbini, F.; Camerota Verdù, F. J., Polynomial goal programming and particle swarm optimization for enhanced indexation, Soft Comput., 24, 8535-8551 (2020) · Zbl 1489.91233
[24] Kolm, P. N.; Tütüncü, R.; Fabozzi, F. J., 60 years of portfolio optimization: practical challenges and current trends, Eur. J. Oper. Res., 234, 356-371 (2014) · Zbl 1304.91200
[25] Krink, T.; Mittnik, S.; Paterlini, S., Differential evolution and combinatorial search for constrained index-tracking, Ann. Oper. Res., 172, 153-176 (2009) · Zbl 1183.91167
[26] Ledoit, O.; Wolf, M., Honey, I shrunk the sample covariance matrix, J. Portf. Manag., 30, 4, 110-119 (2004)
[27] Liagkouras, K.; Metaxiotis, K., Examining the effect of different configuration issues of the multiobjective evolutionary algorithms on the efficient frontier formulation for the constrained portfolio optimization problem, J. Oper. Res. Soc. (2017)
[28] Mezura-Montes, E.; Coello Coello, C. A., Constraint-handling in nature-inspired numerical optimization: past, present and future, Swarm Evol. Comput., 1, 4, 173-194 (2011)
[29] Moral-Escudero, R.; Ruiz-Torrubiano, R.; Suarez, A., Selection of optimal investment portfolios with cardinality constraints, IEEE Trans. Evol. Comput., 2382-2388 (2006)
[30] Oldewage, E. T.; Engelbrecht, A. P.; Cleghorn, C. W., The merits of velocity clamping particle swarm optimisation in high dimensional spaces, IEEE Symp. Ser. Comput. Intell., 1-8 (2017)
[31] Oldewage, E. T.; Engelbrecht, A. P.; Cleghorn, C. W., Movement patterns of a particle swarm in high dimensional spaces, Inf. Sci., 512, 1043-1062 (2020) · Zbl 1456.90178
[32] Ratnaweera, A.; Halgamuge, S. K.; Watson, H. C., Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients, IEEE Trans. Evol. Comput., 8, 3, 240-255 (2004)
[33] Schuhmacher, F.; Eling, M., Sufficient conditions for expected utility to imply drawdown-based performance rankings, J. Bank. Finance, 35, 9, 2311-2318 (2011)
[34] Schuhmacher, F.; Eling, M., A decision-theoretic foundation for reward-to-risk performance measures, J. Bank. Finance, 36, 7, 2077-2082 (2012)
[35] Shaw, D. X.; Liu, S.; Kopman, L., Lagrangian relaxation procedure for cardinality-constrained portfolio optimization, Optim. Methods Softw., 23, 3, 411-420 (2008) · Zbl 1162.90531
[36] Shen, W.; Wang, J.; Ma, S., Doubly regularized portfolio with risk minimization, AAAI Conf. Artif. Intell., 28, 1, 1286-1292 (2014)
[37] Singh, K.; Das, R., An experimental and multi-objective optimization study of a forced draft cooling tower with different fills, Energy Convers. Manag., 111, 417-430 (2016)
[38] Song, G.-W.; Yang, Q.; Gao, X.-D.; Ma, Y.-Y.; Lu, Z.-Y.; Zhang, J., An adaptive level-based learning swarm optimizer for large-scale optimization, IEEE Trans. Syst. Man Cybern., 152-159 (2021)
[39] van Zyl, E. T.; Engelbrecht, A. P., A subspace-based method for PSO initialization, IEEE Symp. Ser. Comput. Intell., 226-233 (2015)
[40] Wang, F.; Wang, X.; Sun, S., A reinforcement learning level-based particle swarm optimization algorithm for large-scale optimization, Inf. Sci., 602, 298-312 (2022)
[41] Woodside-Oriakhi, M.; Lucas, C.; Beasley, J. E., Heuristic algorithms for the cardinality constrained efficient frontier, Eur. J. Oper. Res., 213, 3, 538-550 (2011) · Zbl 1218.91151
[42] Xue, Y.; Tong, Y.; Neri, F., An ensemble of differential evolution and Adam for training feed-forward neural networks, Inf. Sci., 608, 453-471 (2022)
[43] Yang, X.-S., Firefly algorithm, stochastic test functions and design optimisation, Int. J. Bio-Inspir. Comput., 2, 2, 78-84 (2010)
[44] Yang, Q.; Chen, W.-N.; Da Deng, J.; Li, Y.; Gu, T.; Zhang, J., A level-based learning swarm optimizer for large-scale optimization, IEEE Trans. Evol. Comput., 22, 4, 578-594 (2018)
[45] Zhang, J.; Leung, T.; Aravkin, A., A relaxed optimization approach for cardinality-constrained portfolios, (European Control Conference. European Control Conference, Italy (2019))
[46] Zhu, H.; Wang, Y.; Wang, K.; Chen, Y., Particle Swarm Optimization (PSO) for the constrained portfolio optimization problem, Expert Syst. Appl., 38, 8, 10161-10169 (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.