×

A generalization of the Wiener-Hopf method for an equation in two variables with three unknown functions. (English) Zbl 07831791

The purpose of the author is to study the following generalization of the Wiener-Hopf equation \[ (1):\ A(x,y)\Pi(x,y)+B(x,y)\Psi_1(x)+C(x,y)\Psi_2(y)+D(x,y)=0, \] for \((x,y)\in D_x\times D_y=\{x\in\mathbb C:|x|\le 1\}\times\{y\in\mathbb C:|y|\le 1\},\) where \(\Pi(x,y), \Psi_1(x),\Psi_2(y)\) are unknowns analytic functions in \(\overset{\circ}{D_x}\times\overset{\circ} D_y\), \(\overset{\circ}D_x\), \(\overset{\circ}D_y\), respectively, and \(B(x,y)\), \(C(x,y)\), \(D(x, y)\) are given polynomials in \(x\) and in \(y\), \(A(x,y)=xy(x+x^{-1}+y+y^{-1}+a)\) such that \(\operatorname{Im}{a}\) is a very small positive number. The method of solution is described in the fifth section.

MSC:

47A68 Factorization theory (including Wiener-Hopf and spectral factorizations) of linear operators
47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
35Q15 Riemann-Hilbert problems in context of PDEs
78A45 Diffraction, scattering
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
74J20 Wave scattering in solid mechanics
30E20 Integration, integrals of Cauchy type, integral representations of analytic functions in the complex plane
Full Text: DOI

References:

[1] Assier, R. and Shanin, A. V., Diffraction by a quarter-plane. Analytical continuation of spectral functions, Quart. J. Mech. Appl. Math., 72 (2018), pp. 51-86, doi:10.1093/qjmam/hby021. · Zbl 1430.35066
[2] Assier, R. C. and Abrahams, I. D., A surprising observation in the quarter-plane diffraction problem, SIAM J. Appl. Math., 81 (2021), pp. 60-90, doi:10.1137/19M1258785. · Zbl 1461.30090
[3] Bhat, H. S. and Osting, B., Diffraction on the two-dimensional square lattice, SIAM J. Appl. Math., 70 (2009/10), pp. 1389-1406, doi:10.1137/080735345. · Zbl 1200.78007
[4] Brillouin, L., Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices, 2nd ed., Dover Publications, New York, 1953. · Zbl 0050.45002
[5] Craster, R. and Guenneau, S., Acoustic Metamaterials: Negative Refraction, Imaging, Lensing and Cloaking, , Springer, Dordrecht, the Netherlands, 2012.
[6] Fayolle, G., Iasnogorodski, R., and Malyshev, V., Random Walks in the Quarter Plane, 2nd ed., , Springer, Cham, 2017, doi:10.1007/978-3-319-50930-3. · Zbl 1386.60004
[7] Fokas, A. S., A Unified Approach to Boundary Value Problems, , SIAM, Philadelphia, 2008, doi:10.1137/1.9780898717068. · Zbl 1181.35002
[8] Fokas, A. S. and Spence, E. A., Synthesis, as opposed to separation, of variables, SIAM Rev., 54 (2012), pp. 291-324, doi:10.1137/100809647. · Zbl 1387.35013
[9] Forsythe, G. E. and Wasow, W. R., Finite-Difference Methods for Partial Differential Equations, Appl. Math. Ser., John Wiley & Sons, New York, 1960. · Zbl 0099.11103
[10] Gorbushin, N. and Mishuris, G., Analysis of dynamic failure of the discrete chain structure with non-local interactions, Math. Methods Appl. Sci., 40 (2017), pp. 3355-3365, doi:10.1002/mma.4178. · Zbl 1368.74042
[11] Katsura, S. and Inawashiro, S., Lattice Green’s functions for the rectangular and the square lattices at arbitrary points, J. Math. Phys., 12 (1971), pp. 1622-1630, doi:10.1063/1.1665785. · Zbl 0224.33025
[12] Kisil, A. V., Abrahams, I. D., Mishuris, G., and Rogosin, S. V., The Wiener-Hopf technique, its generalizations and applications: Constructive and approximate methods, Proc. A., 477 (2021), doi:10.1098/rspa.2021.0533.
[13] Kunz, V. D. and Assier, R., Diffraction by a right-angled no-contrast penetrable wedge revisited: A double Wiener-Hopf approach, SIAM J. Appl. Math., 82 (2022), pp. 1495-1519, doi:10.1137/21M1461861. · Zbl 1502.30117
[14] Malyšev, V. A., Wiener-Hopf equations in the quarter-plane, discrete groups and automorphic functions, Mat. Sb., 84 (1971), pp. 499-525. · Zbl 0214.37001
[15] Martin, P. A., Discrete scattering theory: Green’s function for a square lattice, Wave Motion, 43 (2006), pp. 619-629, doi:10.1016/j.wavemoti.2006.05.006. · Zbl 1231.35135
[16] Maurya, G. and Sharma, B. L., Wave scattering on lattice structures involving an array of cracks, Proc. A., 476 (2020), doi:10.1098/rspa.2019.0866. · Zbl 1472.74120
[17] Mishuris, G. S., Movchan, A. B., and Slepyan, L. I., Dynamics of a bridged crack in a discrete lattice, Quart. J. Mech. Appl. Math., 61 (2008), pp. 151-160, doi:10.1093/qjmam/hbm030. · Zbl 1138.74045
[18] Movchan, A. B., Movchan, N. V., Jones, I. S., and Colquitt, D. J., Mathematical Modelling of Waves in Multi-Scale Structured Media, Chapman & Hall/CRC, Boca Raton, FL, 2018. · Zbl 1397.74002
[19] Nethercote, M. A., Assier, R., and Abrahams, I., Analytical methods for perfect wedge diffraction: A review, Wave Motion, 93 (2020), doi:10.1016/j.wavemoti.2019.102479. · Zbl 1524.78039
[20] Nieves, M., Mishuris, G., and Slepyan, L., Transient wave in a transformable periodic flexural structure, Int. J. Solids Struct., 112 (2017), pp. 185-208, doi:10.1016/j.ijsolstr.2016.11.012.
[21] Nieves, M. J., Carta, G., Pagneux, V., and Brun, M., Rayleigh waves in micro-structured elastic systems: Non-reciprocity and energy symmetry breaking, Internat. J. Engrg. Sci., 156 (2020), doi:10.1016/j.ijengsci.2020.103365. · Zbl 07261123
[22] Nieves, M. J., Carta, G., Pagneux, V., and Brun, M., Directional control of Rayleigh wave propagation in an elastic lattice by gyroscopic effects, Front. Mater., 7 (2021), doi:10.3389/fmats.2020.602960.
[23] Noble, B., Methods Based on the Wiener-Hopf Technique for the Solution of Partial Differential Equations, , Pergamon Press, New York, 1958. · Zbl 0082.32101
[24] Osipov, A. V. and Norris, A. N., The Malyuzhinets theory for scattering from wedge boundaries: A review, Wave Motion, 29 (1999), pp. 313-340, doi:10.1016/S0165-2125(98)00042-0. · Zbl 1074.76611
[25] Ostoja-Starzewski, M., Lattice models in micromechanics, Appl. Mech. Rev., 55 (2002), pp. 35-60, doi:10.1115/1.1432990.
[26] Piccolroaz, A., Gorbushin, N., Mishuris, G., and Nieves, M. J., Dynamic phenomena and crack propagation in dissimilar elastic lattices, Internat. J. Engrg. Sci., 149 (2020), doi:10.1016/j.ijengsci.2019.103208. · Zbl 1476.74136
[27] Shanin, A. V. and Korolkov, A. I., Sommerfeld-type integrals for discrete diffraction problems, Wave Motion, 97 (2020), doi:10.1016/j.wavemoti.2020.102606. · Zbl 1524.78041
[28] Shanin, A. V. and Korolkov, A. I., Diffraction by a Dirichlet right angle on a discrete planar lattice, Quart. Appl. Math., 80 (2022), pp. 277-315, doi:10.1090/qam/1612. · Zbl 1527.78013
[29] Sharma, B. L., Diffraction of waves on square lattice by semi-infinite rigid constraint, Wave Motion, 59 (2015), pp. 52-68, doi:10.1016/j.wavemoti.2015.07.008. · Zbl 1467.35111
[30] Sharma, B. L., Discrete scattering by two staggered semi-infinite defects: Reduction of matrix Wiener-Hopf problem, J. Engrg. Math., 123 (2020), pp. 41-87, doi:10.1007/s10665-020-10054-7. · Zbl 1453.74047
[31] Slepyan, L. I., Models and Phenomena in Fracture Mechanics, , Springer, Berlin, 2002, doi:10.1007/978-3-540-48010-5. · Zbl 1047.74001
[32] Sommerfeld, A., Optics, , Academic Press, New York, 1954. · Zbl 0058.22104
[33] Springer, G., Introduction to Riemann Surfaces, Addison-Wesley, Reading, MA, 1957. · Zbl 0078.06602
[34] Zemla, A., On the fundamental solutions for the difference Helmholtz operator, SIAM J. Numer. Anal., 32 (1995), pp. 560-570, doi:10.1137/0732024. · Zbl 0824.39005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.