×

On Lie semiheaps and ternary principal bundles. (English) Zbl 07830507

Summary: We introduce the notion of a Lie semiheap as a smooth manifold equipped with a para-associative ternary product. For a particular class of Lie semiheaps we establish the existence of left-invariant vector fields. Furthermore, we show how such manifolds are related to Lie groups and establish the analogue of principal bundles in this ternary setting. In particular, we generalise the well-known ‘heapification’ functor to the ambience of Lie groups and principal bundles.

MSC:

20N10 Ternary systems (heaps, semiheaps, heapoids, etc.)
22E15 General properties and structure of real Lie groups

References:

[1] Baer, R., Zur Einführung des Scharbegriffs, J. Reine Angew. Math. 160 (1929), 199-207 · JFM 55.0084.03
[2] Borowiec, A.; Dudek, W. A.; Duplij, S., Basic concepts of ternary Hopf algebras, J. Kharkov National Univ., ser. Nuclei, Particles and Fields, vol. 529 3 (15) (2001), 21-29
[3] Breaz, S.; Brzeziński, T.; Rybołowicz, B.; Saracco, P., Heaps of modules and affine spaces, Ann. Mat. Pur. Appl. 203 (2024), 403-405 · Zbl 07785709 · doi:10.1007/s10231-023-01369-0
[4] Bruce, A. J., Semiheaps and Ternary Algebras in Quantum Mechanics Revisited,, Universe 8 (1) (2022), 56 · doi:10.3390/universe8010056
[5] Brzeziński, T., Towards semi-trusses, Rev. Roumaine Math. Pures Appl. 63 (2) (2018), 75-89 · Zbl 1424.16109
[6] Brzeziński, T., Trusses: between braces and rings, Trans. Amer. Math. Soc. 372 (6) (2019), 4149-4176 · Zbl 1471.16053 · doi:10.1090/tran/7705
[7] Brzeziński, T., Trusses: paragons, ideals and modules, J. Pure Appl. Algebra 224 (6) (2020), 39 pp., 106258 · Zbl 1432.16049 · doi:10.1016/j.jpaa.2019.106258
[8] Brzeziński, T., Lie trusses and heaps of Lie affebras, PoS 406 (2022), 12 pp., 307
[9] Brzeziński, T., The algebra of elliptic curves, Proc. Edinb. Math. Soc. 66 (2) (2023), 548-556 · Zbl 1521.14061 · doi:10.1017/S0013091523000275
[10] Brzeziński, T.; Rybołowicz, B., Modules over trusses vs modules over rings: direct sums and free modules, Algebr. Represent. Theory 25 (1) (2022), 1-23 · Zbl 1505.16065 · doi:10.1007/s10468-020-10008-8
[11] Brzeziński, T.; Wisbauer, R., Corings and comodules, London Math. Soc. Lecture Note Ser., vol. 309, Cambridge University Press, Cambridge, 2003, pp. xii+476 pp · Zbl 1035.16030
[12] Grabowska, K.; Grabowski, J.; Urbański, P., Lie brackets on affine bundles, Ann. Global Anal.Geom. 24 (2003), 101-130 · Zbl 1044.53056 · doi:10.1023/A:1024457728027
[13] Grabowski, J., An introduction to loopoids, Comment. Math. Univ. Carolin. 57 (2016), 515-526 · Zbl 1413.20037
[14] Grabowski, J.; Z., Ravanpak, Nonassociative analogs of Lie groupoids, Differential Geom. Appl. 82 (2022), 32 pp., Paper No. 101887 · Zbl 1500.22002 · doi:10.1016/j.difgeo.2022.101887
[15] Hollings, C. D.; Lawson, M. V., Wagner’s theory of generalised heaps, Springer, Cham, 2017, xv+189 pp., ISBN: 978-3-319-63620-7 · Zbl 1403.20001
[16] Kerner, R., Ternary and non-associative structures, Int. J. Geom. Methods Mod. Phys. 5 (2008), 1265-1294 · Zbl 1165.81008 · doi:10.1142/S0219887808003326
[17] Kerner, R., Ternary generalizations of graded algebras with some physical applications, Rev. Roumaine Math. Pures Appl 63 (2018), 107-141 · Zbl 1424.17009
[18] Kolář, I.; Michor, P. W.; Slovák, J., Natural operations in differential geometry, Springer-Verlag, Berlin, 1993 · Zbl 0782.53013
[19] Konstantinova, L. I., Semiheap bundles, Saratov Gos. Univ. Saratov No. 4 (1978), 46-54 · Zbl 0398.20087
[20] Kontsevich, M., Operads and motives in deformation quantization, Lett. Math. Phys. 48 (1999), 35-72 · Zbl 0945.18008 · doi:10.1023/A:1007555725247
[21] Kosmann-Schwarzbach, Y., Multiplicativity, from Lie groups to generalized geometry, Banach Center Publ. 110 (2016), 131-166 · Zbl 1361.53069
[22] Mac Lane, S., Categories for the working mathematician, Grad. Texts in Math., vol. 5, New York, NY: Springer, 2nd ed., 1998, pp. xii+314 pp · Zbl 0906.18001
[23] Nakahara, M., Geometry, topology and physics, 2nd ed., Graduate Stud. Ser. Phys. Bristol: Institute of Physics (IOP), 2003, xxii+ 573 pp · Zbl 1090.53001
[24] Prüfer, H., Theorie der Abelschen Gruppen, Math. Z. 20 (1) (1924), 165-171 · JFM 50.0631.07
[25] Saito, M.; E., Zappala, Braided Frobenius algebras from certain Hopf algebras, J. Algebra Appl. 22 (1) (2023), 23 pp., Paper No. 2350012 · Zbl 1519.17022
[26] Škoda, Z., Quantum heaps, cops and heapy categories, Math. Commun. 12 (1) (2007), 1-9 · Zbl 1128.18002
[27] Trèves, F., Topological Vector Spaces, Distributions and Kernels, Dover Publications, Inc., Mineola, NY, 2006, xvi+565 pp., ISBN: 0-486-45352-9 · Zbl 1111.46001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.