×

Sharp anisotropic singular Trudinger-Moser inequalities in the entire space. (English) Zbl 07828201

Summary: In this paper, we investigate sharp singular Trudinger-Moser inequalities involving the anisotropic Dirichlet norm \(\left(\int_{\mathbb{R}^N}F^N(\nabla u)\;\mathrm{d}x\right)^{\frac{1}{N}}\) in Sobolev-type space \(D^{N, q}(\mathbb{R}^N) \), \(N \geq 2\), \(q \geq 1\). Here \(F: \mathbb{R}^N\rightarrow[0, +\infty)\) is a convex function of class \(C^2(\mathbb{R}^N\setminus\{0\})\), which is even and positively homogeneous of degree 1. Combing with the connection between convex symmetrization and Schwarz symmetrization, we will establish anisotropic singular Trudinger-Moser inequalities and discuss their sharpness under different situations, including the case \(\|F(\nabla u)\|_N \leq 1\), the case \(\|F(\nabla u)\|_N^a + \|u\|_q^b \leq 1\), and whether they are associated with exact growth.

MSC:

26D10 Inequalities involving derivatives and differential and integral operators
35J70 Degenerate elliptic equations
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems

References:

[1] Adachi, S.; Tanaka, K., Trudinger type inequalities in \(\mathbb{R}^N\) and their best exponents, Proc. Am. Math. Soc., 128, 2051-2057, 2000 · Zbl 0980.46020 · doi:10.1090/S0002-9939-99-05180-1
[2] Adimurthi; Sandeep, K., A singular Moser-Trudinger embedding and its applications, NoDEA Nonlinear Differ. Equ. Appl., 13, 585-603, 2007 · Zbl 1171.35367 · doi:10.1007/s00030-006-4025-9
[3] Alvino, A.; Ferone, V.; Trombetti, G.; Lions, P., Convex symmetrization and applications, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 14, 275-293, 1997 · Zbl 0877.35040 · doi:10.1016/s0294-1449(97)80147-3
[4] Bellettini, G.; Paolini, M., Anisotropic motion by mean curvature in the context of Finsler geometry, Hokkaido Math. J., 25, 537-566, 1996 · Zbl 0873.53011 · doi:10.14492/hokmj/1351516749
[5] Cao, DM, Nontrivial solution of semilinear elliptic equation with critical exponent in \(\mathbb{R}^2 \), Commun. Partial Differ. Equ., 17, 407-435, 1992 · Zbl 0763.35034 · doi:10.1080/03605309208820848
[6] Cohn, WS; Lu, G., Best constants for Moser-Trudinger inequalities on the Heisenberg group, Indiana Univ. Math. J., 50, 1567-1591, 2001 · Zbl 1019.43009 · doi:10.1512/iumj.2001.50.2138
[7] do Ó, JM, \(N\)-Laplacian equations in \(\mathbb{R}^N\) with critical growth, Abstr. Appl. Anal., 2, 301-315, 1997 · Zbl 0932.35076 · doi:10.1155/S1085337597000419
[8] Ferone, V.; Kawohl, B., Remarks on a Finsler-Laplacian, Proc. Am. Math. Soc., 137, 247-253, 2009 · Zbl 1161.35017 · doi:10.1090/S0002-9939-08-09554-3
[9] Guedes de Figueiredo, D.; dos Santos, EM; Miyagaki, OH, Sobolev spaces of symmetric functions and applications, J. Funct. Anal., 261, 3735-3770, 2011 · Zbl 1232.46032 · doi:10.1016/j.jfa.2011.08.016
[10] Ibrahim, S.; Masmoudi, N.; Nakanishi, K., Trudinger-Moser inequality on the whole plane with the exact growth condition, J. Eur. Math. Soc., 17, 819-835, 2015 · Zbl 1317.35032 · doi:10.4171/jems/519
[11] Kozono, H.; Sato, T.; Wadade, H., Upper bound of the best constant of a Trudinger-Moser inequality and its application to a Gagliardo-Nirenberg inequality, Indiana Univ. Math. J., 55, 1951-1974, 2006 · Zbl 1126.46023 · doi:10.1512/iumj.2006.55.2743
[12] Lam, N.; Lu, G., Sharp Moser-Trudinger inequality on the Heisenberg group at the critical case and applications, Adv. Math., 231, 3259-3287, 2012 · Zbl 1278.42033 · doi:10.1016/j.aim.2012.09.004
[13] Lam, N.; Lu, G., A new approach to sharp Moser-Trudinger and Adams type inequalities: a rearrangement-free argument, J. Differ. Equ., 255, 298-325, 2013 · Zbl 1294.46034 · doi:10.1016/j.jde.2013.04.005
[14] Lam, N., Lu, G.: Sharp singular Trudinger-Moser-Adams type inequalities with exact growth. In: Geometric Methods in PDE’s, volume 13 of Springer INdAM Series, pp. 43-80. Springer, Cham (2015) · Zbl 1338.35016
[15] Lam, N.; Lu, G.; Tang, H., Sharp subcritical Moser-Trudinger inequalities on Heisenberg groups and subelliptic PDEs, Nonlinear Anal., 95, 77-92, 2014 · Zbl 1282.35393 · doi:10.1016/j.na.2013.08.031
[16] Li, Y.; Ruf, B., A sharp Trudinger-Moser type inequality for unbounded domains in \(\mathbb{R}^n \), Indiana Univ. Math. J., 57, 451-480, 2008 · Zbl 1157.35032 · doi:10.1512/iumj.2008.57.3137
[17] Liu, Y., Anisotropic Trudinger-Moser inequalities associated with the exact growth in \(\mathbb{R}^N\) and its maximizers, Math. Ann., 383, 921-941, 2022 · Zbl 1506.46033 · doi:10.1007/s00208-021-02194-7
[18] Lu, G.; Tang, H., Best constants for Moser-Trudinger inequalities on high dimensional hyperbolic spaces, Adv. Nonlinear Stud., 13, 1035-1052, 2013 · Zbl 1294.46035 · doi:10.1515/ans-2013-0415
[19] Lu, G.; Tang, H., Sharp Moser-Trudinger inequalities on hyperbolic spaces with exact growth condition, J. Geom. Anal., 26, 837-857, 2016 · Zbl 1356.46031 · doi:10.1007/s12220-015-9573-y
[20] Lu, G.; Tang, H.; Zhu, M., Best constants for Adams’ inequalities with the exact growth condition in \(\mathbb{R}^n \), Adv. Nonlinear Stud., 15, 763-788, 2015 · Zbl 1352.46034 · doi:10.1515/ans-2015-0402
[21] Masmoudi, N.; Sani, F., Adams’ inequality with the exact growth condition in \(\mathbb{R}^4 \), Commun. Pure Appl. Math., 67, 1307-1335, 2014 · Zbl 1309.46017 · doi:10.1002/cpa.21473
[22] Masmoudi, N.; Sani, F., Trudinger-Moser inequalities with the exact growth condition in \(\mathbb{R}^N\) and applications, Commun. Partial Differ. Equ., 40, 1408-1440, 2015 · Zbl 1345.46031 · doi:10.1080/03605302.2015.1026775
[23] Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077-1092 (1970/71) · Zbl 0213.13001
[24] Ogawa, T., A proof of Trudinger’s inequality and its application to nonlinear Schrödinger equations, Nonlinear Anal., 14, 765-769, 1990 · Zbl 0715.35073 · doi:10.1016/0362-546X(90)90104-O
[25] Ozawa, T., On critical cases of Sobolev’s inequalities, J. Funct. Anal., 127, 259-269, 1995 · Zbl 0846.46025 · doi:10.1006/jfan.1995.1012
[26] Ruf, B., A sharp Trudinger-Moser type inequality for unbounded domains in \(\mathbb{R}^2\), J. Funct. Anal., 219, 340-367, 2005 · Zbl 1119.46033 · doi:10.1016/j.jfa.2004.06.013
[27] Song, X.; Li, D.; Zhu, M., Critical and subcritical anisotropic Trudinger-Moser inequalities on the entire Euclidean spaces, Math. Probl. Eng., 1, 1-13, 2021
[28] Talenti, G., Elliptic equations and rearrangements, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 3, 697-718, 1976 · Zbl 0341.35031
[29] Trudinger, NS, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17, 473-483, 1967 · Zbl 0163.36402
[30] Wang, G.; Xia, C., A characterization of the Wuff shape by an overdetermined anisotropic PDE, Arch. Ration. Mech. Anal., 199, 99-115, 2011 · Zbl 1232.35103 · doi:10.1007/s00205-010-0323-9
[31] Wang, G.; Xia, C., Blow-up analysis of a Finsler-Liouville equation in two dimensions, J. Differ. Equ., 252, 1668-1700, 2012 · Zbl 1233.35053 · doi:10.1016/j.jde.2011.08.001
[32] Xie, R.; Gong, H., A priori estimates and blow-up behavior for solutions of \(-Q_Nu = V e^u\) in bounded domain in \(\mathbb{R}^N \), Sci. China Math., 59, 479-492, 2016 · Zbl 1347.35113 · doi:10.1007/s11425-015-5060-y
[33] Yudovič, VI, Some estimates connected with integral operators and with solutions of elliptic equations (Russian), Dokl. Akad. Nauk SSSR, 138, 805-808, 1961 · Zbl 0144.14501
[34] Zhou, C.; Zhou, C., Moser-Trudinger inequality involving the anisotropic Dirichlet norm \((\int_{\Omega }F^N(\nabla u)dx)^{\frac{1}{N}}\) on \(W_0^{1, N}(\Omega )\), J. Funct. Anal., 276, 2901-2935, 2019 · Zbl 1409.35014 · doi:10.1016/j.jfa.2018.12.001
[35] Zhou, C.; Zhou, C., On the anisotropic Moser-Trudinger inequality for unbounded domains in \(\mathbb{R}^n \), Discrete Contin. Dyn. Syst., 40, 847-881, 2020 · Zbl 1429.35013 · doi:10.3934/dcds.2020064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.