×

On simultaneous Pell equations \(x^2-(m^2-1) y^2=z^2-(n^2-1) y^2=1\). (Chinese. English summary) Zbl 07828134

Summary: Let \(m\), \(n\), \(L\) be positive integer. The following conclusion are proved: If \(m<n \leq m+Lm^\varepsilon\), \(\varepsilon \in (0,1)\), and \(m>(123789L \sqrt{L})^{\frac{1}{1-\varepsilon}}\), or \(j>10.25 \times 10^{12} \log^4 (2(L+1) (123789L (\sqrt{L})^{\frac{1}{1-\varepsilon}}\), then positive integer solutions of simultaneous Pell equations \(x^2 -(m^2 - 1) y^2 = z^2 -(n^2 - 1) y^2 = 1\) satisfy \(1 \leq k \leq \delta L^2\), where \(\delta \in [\frac{1}{2}(123787 L \sqrt{L})^{\frac{1}{ \varepsilon -1}}, 1]\), and \[ y = \frac{(m+\sqrt{m^2-1})^j - (m-\sqrt{m^2-1})^j}{2 \sqrt{m^2 -1}} = \frac{(n+\sqrt{n^2-1})^k - (n-\sqrt{n^2-1})^k}{2 \sqrt{n^2 -1}}, \] and \(j=k=1\) or \(k+2 \leq j < \frac{1}{3} (5 - 2 \varepsilon) k\), \(2 | (j+k)\), \(k > \frac{3}{1-\varepsilon}\). It improves the previous work of B. He et al. [Proc. Am. Math. Soc. 143, No. 11, 4685–4693 (2015; Zbl 1378.11041)].

MSC:

11D09 Quadratic and bilinear Diophantine equations
11J86 Linear forms in logarithms; Baker’s method

Citations:

Zbl 1378.11041
Full Text: DOI

References:

[1] Anglin W. S., Simultaneous Pell equations, Math. Comp., 1996, 65: 355-359. · Zbl 0848.11007
[2] Bennett M. A., Solving families of simultaneous Pell equations, J. Number Theory, 1997, 67(2): 246-251. · Zbl 0894.11007
[3] Bennett M. A., On the number of solutions of simultaneous Pell equations, J. Reine Angew. Math., 1998, 498: 173-199. · Zbl 1044.11011
[4] Cipu M., Mignotte M., On the number of solutions of simultaneous Pell equations II, Acta Arith., 2006, 122(4): 407-417. · Zbl 1165.11034
[5] Dickson L. E., History of the Theory of Number, Vol.II: Diophantine Analysis, Chelsea Publishing Co., New York, 1966.
[6] Dujella A., Pethö A., A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser., 1998, 49(2): 291-306. · Zbl 0911.11018
[7] He B., Pintér Ákos., Togbé Alain., On simultaneous Pell equations and related Thue equations, Proceedings of the American Mathematical Society, 2015, 143(11): 4685-4693. · Zbl 1378.11041
[8] Laurent M. Linear forms in two logarithms and interpolation, II, Acta Arith., 2008, 133(4): 325-348. · Zbl 1215.11074
[9] Masser D. W., Rickert J. H., Simultaneous Pell equations, J. Number Theory, 1996, 61(1): 52-66. · Zbl 0882.11016
[10] Matveev E. M., An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers II (in Russian), Izv. Ross. Akad. Nauk Ser. Mat., 2000, 64(6): 125-180. · Zbl 1013.11043
[11] Ono K., Euler’s concordant forms, Acta Arith., 1996, 78(2): 101-123. · Zbl 0863.11038
[12] Siegel C. L., Über einige anwendungen Diophantischer approximationen, Abh. Preuss. Akad. Wiss., 1929, MR3330350. · JFM 56.0180.05
[13] Thue A., Über annäherunswerte algebraischer zahlen, J. Reine Angew. Math., 1909, 135: 284-305. · JFM 40.0265.01
[14] Yuan P. Z., On the number of solutions of simultaneous Pell equations, Acta Arith., 2002, 101(3): 215-221. · Zbl 1003.11007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.