×

General relativistic Lagrangian continuum theories. I: Reduced variational principles and junction conditions for hydrodynamics and elasticity. (English) Zbl 07828069

Summary: We establish a Lagrangian variational framework for general relativistic continuum theories that permits the development of the process of Lagrangian reduction by symmetry in the relativistic context. Starting with a continuum version of the Hamilton principle for the relativistic particle, we deduce two classes of reduced variational principles that are associated to either spacetime covariance, which is an axiom of the continuum theory, or material covariance, which is related to particular properties of the system such as isotropy. The covariance hypotheses and the Lagrangian reduction process are efficiently formulated by making explicit the dependence of the theory on given material and spacetime tensor fields that are transported by the world-tube of the continuum via the push-forward and pull-back operations. It is shown that the variational formulation, when augmented with the Gibbons-Hawking-York (GHY) boundary terms, also yields the Israel-Darmois junction conditions between the solution at the interior of the relativistic continua and the solution describing the gravity field produced outside from it. The expression of the first variation of the GHY term with respect to the hypersurface involves some extensions of previous results that we also derive in the paper. We consider in detail the application of the variational framework to relativistic fluids and relativistic elasticity. For the latter case, our setting also allows to clarify the relation between formulations of relativistic elasticity based on the relativistic right Cauchy-Green tensor or on the relativistic Cauchy deformation tensor. The setting developed here will be further exploited for modeling purpose in subsequent parts of the paper.

MSC:

76Y05 Quantum hydrodynamics and relativistic hydrodynamics
83C10 Equations of motion in general relativity and gravitational theory
37K58 Variational principles and methods for infinite-dimensional Hamiltonian and Lagrangian systems
76M30 Variational methods applied to problems in fluid mechanics
74B20 Nonlinear elasticity

References:

[1] Andersson, N.; Comer, GL, Relativistic fluid dynamics: physics for many different scales, Living Rev. Relativ., 24, 3, 2021 · Zbl 1466.76001
[2] Andersson, N., A multifluid perspective on multimessenger modeling, Front. Astron. Space Sci., 8, 659476, 2021
[3] Arnold, VI, Sur la géométrie différentielle des groupes de Lie de dimenson infinie et ses applications à l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier, 16, 319-361, 1966 · Zbl 0148.45301
[4] Bau, PB; Wasserman, I., Relativistic, finite temperature multifluid hydrodynamics in a neutron star from a variational principle, Phys. Rev. D, 102, 063011, 2020
[5] Barrabès, C.; Frolov, VP, How many new worlds are inside a black hole?, Phys. Rev. D, 53, 6, 3215-3223, 1996
[6] Beig, R.; Schmidt, BG, Relativistic elasticity, Class. Quantum Grav., 20, 889-904, 2003 · Zbl 1027.83017
[7] Berezin, VA; Kuzmin, VA; Tkachev, II, Dynamics of bubbles in general relativity, Phys. Rev. D, 36, 10, 2919-2944, 1987
[8] Blau, SK; Guendelman, EI; Guth, AH, Dynamics of false-vacuum bubbles, Phys. Rev. D, 35, 6, 1747-1766, 1987
[9] Boehler, J.P. (ed.): Applications of Tensor Functions in Solid Mechanics, International Center for Mechanical Sciences, vol. 292. Springer, New York (1987) · Zbl 0657.73001
[10] Bonnor, W.B., Vickers, P.A.: Junction conditions in general relativity, General Relativity and Gravitation, 13(1), (1981)
[11] Brown, DJ, Elasticity theory in general relativity, Class. Quantum Grav., 38, 8, 085017, 2021 · Zbl 1481.83010
[12] Carter, B., Elastic perturbation theory in general relativity and a variation principle for a rotating solid star, Comm. Math. Phys., 30, 261-286, 1973 · Zbl 0269.73011
[13] Carter, B.; Khalatnikov, IM, Equivalence of convective and potential variational derivations of covariant superfluid dynamics, Phys. Rev. D., 45, 12, 4536-4544, 1992
[14] Carter, B.; Langlois, D., Kalb-Ramond coupled vortex fibration model for relativistic superfluid dynamics, Nucl. Phys. B, 454, 402-424, 1995 · Zbl 0925.83032
[15] Carter, B.; Langlois, D., Relativistic models for superconducting-superfluid mixtures, Nucl. Phys. B, 531, 478-504, 1998 · Zbl 0956.83023
[16] Carter, B.; Quintana, H., Foundations of general relativistic high pressure elasticity theory, Proc. Roy. Soc. London, A331, 57-83, 1972 · Zbl 0249.73093
[17] Cendra, H., Marsden, J.E., Ratiu, T.S.: Lagrangian Reduction by Stages, Memoirs of the AMS, 152(722), (2001) · Zbl 1193.37072
[18] Darmois, G., Mémorial des Sciences Mathématiques, 1927, Paris: Gauthier-Villars, Paris · JFM 53.0816.03
[19] Deng, H.; Vilenkin, A., Primordial black hole formation by vacuum bubbles, J. Cosm. Astr. Phys., 2017, 12, 044, 2017 · Zbl 1515.83139
[20] Deng, H., Primordial black hole formation by vacuum bubbles. Part II, J. Cosm. Astr. Phys., 2020, 9, 023, 2020 · Zbl 1493.83015
[21] DeWitt, B.; Witten, L., The quantization of geometry, Gravitation: An Introduction to Current Research, 1962, New York: Wiley, New York · Zbl 0115.43103
[22] Dogan, G.; Nochetto, RH, First variation of the general curvature-dependent surface energy, ESAIM Math. Model. Numer. Anal., 46, 1, 59-79, 2011 · Zbl 1270.49042
[23] Eringen, AC; Maugin, GA, Electrodynamics of Continua II - Fluids and Complex Media, 1990, New York: Springer-Verlag, New York
[24] Fayos, F.; Jaén, X.; Llanta, E.; Senovilla, JMM, Interiors of Vaidya’s radiating metric: gravitational collapse, Phys. Rev. D, 45, 8, 2732-2738, 1992 · Zbl 1232.83049
[25] Fayos, F.; Senovilla, JM; Torres, R., General matching of two spherically symmetric space-times, Phys. Rev. D, 54, 4862-4872, 1996
[26] Feng, JC; Carloni, S., New class of generalized coupling theories, Phys. Rev. D, 101, 064002, 2020
[27] Gavassino, L.; Antonelli, M.; Haskell, B., Multifluid modelling of relativistic radiation hydrodynamics, Symmetry, 12, 9, 1543, 2020
[28] Gay-Balmaz, F.; Marsden, JE; Ratiu, TS, Reduced variational formulations in free boundary continuum mechanics, J. Nonlinear Sci., 22, 4, 463-497, 2012 · Zbl 1260.37031
[29] Gibbons, GW; Hawking, SW, Action integrals and partition functions in quantum gravity, Phys. Rev. D, 15, 2752, 1977
[30] Grot, R., Relativistic continuum theory for the interaction of electromagnetic fields with deformable bodies, J. Math. Phys., 11, 109-113, 1971
[31] Grot, R.; Eringen, AC, Relativistic continuum mechanics. Part I - Mechanics and thermodynamics, Int. J. Eng. Sci., 4, 611-638, 1966
[32] Gruber, A.; Toda, M.; Tran, H., On the variation of curvature functionals in a space form with application to a generalized Willmore energy, Ann. Glob. Anal. Geom., 56, 147-165, 2019 · Zbl 1417.58009
[33] Hartle, JB; Sorkin, R., Boundary terms in the action for the Regge calculus, Gen. Rel. Grav., 13, 541-549, 1981
[34] Hayward, G., Gravitational action for spacetimes with nonsmooth boundaries, Phys. Rev. D, 47, 3275, 1993
[35] Holm, D.D., Marsden, J.E., Ratiu, T.S.: The Hamiltonian structure of continuum mechanics in material, inverse material, spatial, and convective representations. In: Hamiltonian Structure and Lyapunov Stability for Ideal Continuum Dynamics. Sém. Math. Supér., vol. 100, pp. 11-124. Presses Univ. Montréal, Montréal (1986) · Zbl 0611.70015
[36] Holm, DD; Marsden, JE; Ratiu, TS, The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. Math., 137, 1-81, 1998 · Zbl 0951.37020
[37] Israel, W., Singular hypersurfaces and thin shells in general relativity, Il Nuovo Cimento B Series 10, 44, 1, 1-14, 1966
[38] Khalatnikov, IM; Lebedev, VV, Relativistic hydrodynamics of a superfluid liquid, Phys. Lett. A, 91, 70, 1982
[39] Kijowski, J.; Magli, G., Relativistic elastomechanics as a Lagrangian field theory, J. Geom. Phys., 9, 201-223, 1992 · Zbl 0771.73004
[40] Lebedev, VV; Khalatnikov, IM, Relativistic hydrodynamics of a superfluid, Zh. Eksp. Teor. Fiz., 56, 1601-1614, 1982
[41] Lehner, L.; Myers, RC; Poisson, E.; Sorkin, RD, Gravitational action with null boundaries, Phys. Rev. D, 94, 084046, 2016
[42] Lewis, D.; Marsden, JE; Montgomery, R.; Ratiu, TS, The Hamiltonian structure for dynamic free boundary problems, Physica D, 18, 391-404, 1986 · Zbl 0638.58044
[43] Lichnerowicz, A.: Théories Relativistes de la Gravitation et de l’Electromagnétisme. Masson (1955) · Zbl 0065.20704
[44] Liu, I., On representations of anisotropic invariants, Int. J. Eng. Sci., 20, 10, 1099-1109, 1982 · Zbl 0504.73001
[45] Lobo, FSN; Simpson, A.; Visser, M., Dynamic thin-shell black-bounce traversable wormholes, Phys. Rev. D, 101, 124035, 2020
[46] Lu, J.; Papadopoulos, P., A covariant constitutive description of anisotropic non-linear elasticity, Zeitschrift für angewandte Mathematik und Physik ZAMP, 51, 204-217, 2000 · Zbl 0969.74010
[47] Marsden, JE; Hughes, TJR, Mathematical Foundations of Elasticity, 1983, New York: Prentice Hall, New York · Zbl 0545.73031
[48] Marsden, JE; Ratiu, TS; Weinstein, A., Semidirect product and reduction in mechanics, Trans. Am. Math. Soc., 281, 147-177, 1984 · Zbl 0529.58011
[49] Marsden, JE; Scheurle, J., The reduced Euler-Lagrange equations, Fields Institute Comm., 1, 6, 139-164, 1993 · Zbl 0789.70013
[50] Marsden, JE; Weinstein, A., Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids, Physica D, 7, 1-3, 305-323, 1983 · Zbl 0576.58008
[51] Maugin, GA, Magnetized deformable media in general relativity, Ann. de l’I.H.P., Sect. A, 15, 4, 275-302, 1971 · Zbl 0234.73037
[52] Maugin, GA; Eringen, AC, Micromagnetism, Continuum Physics, 1972, New York: Academic Press, New York
[53] Maugin, GA, An action principle in general relaivistic magnetohydrodynamics, Ann. de l’I.H.P., Sect. A, 16, 3, 133-169, 1972 · Zbl 0245.76088
[54] Maugin, GA, On the covariant equations of the relativistic electrodynamics of continua. III. Elastic solids, J. Math. Phys., 19, 1212, 1978 · Zbl 0395.76094
[55] Maugin, GA, Exact relativistic theory of wave propagation in prestressed nonlinear elastic solids, Ann. de l’I.H.P., Sect. A, 28, 2, 155-185, 1978 · Zbl 0375.73025
[56] Maugin, GA; Eringen, AC, Polarized elastic materials with electronic spin - a relativistic approach, J. Math. Phys., 13, 1777-1788, 1972
[57] Maugin, GA; Eringen, AC, Relativistic continua with directors, J. Math. Phys., 13, 1788-1797, 1972
[58] Mazer, A.; Ratiu, TS, Hamiltonian formulation of adiabatic free boundary Euler flows, J. Geom. Phys., 6, 271-291, 1989 · Zbl 0693.76002
[59] Mazzucato, AL; Rachele, LV, Partial uniqueness and obstruction to uniqueness in inverse problems for anisotropic elastic media, J. Elast., 83, 3, 205-245, 2006 · Zbl 1138.74338
[60] Misner, CW; Thorne, K.; Wheeler, JA, Gravitation, 1973, San Francisco: W.H. Freeman, San Francisco
[61] Münch, J., Effective quantum dust collapse via surface matching, Class. Quantum Grav., 38, 175015, 2020 · Zbl 1482.83094
[62] Neiman, Y.: On-shell actions with lightlike boundary data, (2012) arXiv:1212.2922
[63] O’Brien, S., Synge, J.L.: Comm. Dublin Inst. Adv. Stud. Ser. A 9, 1 (1952) · Zbl 0047.20802
[64] Parattu, K.; Chakraborty, S.; Majhi, BR; Padmanabhan, T., A boundary term for the gravitational action with null boundaries, Gen. Rel. Grav., 48, 94, 1-28, 2016 · Zbl 1386.83018
[65] Schutz, BF, Perfect fluids in general relativity: velocity potentials and a variational principle, Phys. Rev. D, 2, 12, 2762-2773, 1970 · Zbl 1227.83022
[66] Simo, JC; Marsden, JE; Krishnaprasad, PS, The Hamiltonian structure of nonlinear elasticity: the material, spatial and convective representations of solids, rods and plates, Arch. Ration. Mech. Anal., 104, 125-183, 1988 · Zbl 0668.73014
[67] Sozio, F.; Yavari, A., Riemannian and Euclidean material structures in anelasticity, Math. Mech. Solids, 25, 6, 1267-1293, 2020 · Zbl 1482.74009
[68] Taub, AH, General relativistic variational principle for perfect fluids, Phys. Rev., 94, 6, 1468-1470, 1954
[69] Visser, M., Traversable wormholes from surgically modified Schwarzschild space-times, Nucl. Phys. B, 328, 203, 1989
[70] Visser, M., Traversable wormholes: some simple examples, Phys. Rev. D, 39, 3182, 1989
[71] York, JW, Role of conformal three geometry in the dynamics of gravitation, Phys. Rev. Lett., 28, 1082, 1972
[72] Zheng, QS; Spencer, AJM, Tensors which characterize anisotropies, Int. J. Eng. Sci., 31, 5, 679-693, 1993 · Zbl 0772.73009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.