×

B-splines collocation approach to simulate secondary dengue virus (DENV) infection model with diffusion. (English) Zbl 07827984

Sharma, Rajesh Kumar (ed.) et al., Frontiers in industrial and applied mathematics. Selected papers based on the presentations at the 4th international conference, FIAM-2021, Punjab, India, December 21–22, 2021. Singapore: Springer. Springer Proc. Math. Stat. 410, 215-228 (2023).
Summary: Dengue fever is a mosquito-borne viral infection caused by the dengue virus (DENV) found worldwide in tropical and sub-tropical urban and non-urban areas. Dengue viruses (DENV) spread through the bite of an infected Ades species mosquito. There is not available any specific treatment or cure for this DENV infection. The dynamics of the secondary dengue virus infection considering the spatial mobility of dengue virus particles and cells can better be studied and analyzed with reaction-diffusion mathematical models. A reaction-diffusion mathematical model consisting of five simultaneous nonlinear partial differential equations to characterize the dynamics of secondary Dengue infection is studied in this paper. The spatial mobility of the dengue particles and cells is considered in the model. A numerical simulation technique based on the cubic B-splines collocation is proposed to approximate the solution of the considered model.
For the entire collection see [Zbl 1524.76004].

MSC:

76-XX Fluid mechanics
Full Text: DOI

References:

[1] Obi, J.O., et al.: Current trends and limitations in dengue antiviral research. Trop. Med. Infect. Dis. 6(4), 180 (2021)
[2] Halstead, SB, Dengue, Lancet, 370, 9599, 1644-1652 (2007) · doi:10.1016/S0140-6736(07)61687-0
[3] Halstead, SB, The XXth century dengue pandemic: need for surveillance and research, World Health Stat. Q., 45, 2-3, 292-298 (1992)
[4] Navarro-Sanchez, F., Innate immune responses to dengue virus, Arch. Med. Res., 36, 5, 425-435 (2005) · doi:10.1016/j.arcmed.2005.04.007
[5] Kliks, SC, Antibody-dependent enhancement of dengue virus growth in human monocytes as a risk factor for dengue haemorrhagic fever, Am. J. Trop. Med. Hyg., 40, 4, 444-451 (1989) · doi:10.4269/ajtmh.1989.40.444
[6] Willey, J.M., et al.: Microbiology. 7th edn. Mc-Graw-Hill, New York, NY, USA (2008)
[7] Gibbons, RV; Vaughn, DW, Dengue: an escalating problem, BMJ, 324, 7353, 1563-1566 (2002) · doi:10.1136/bmj.324.7353.1563
[8] Mishra, A.; Gakkhar, S., A micro-epidemic model for primary dengue infection, Commun. Nonlinear Sci. Numer. Simul., 47, 426-437 (2017) · Zbl 1510.92224 · doi:10.1016/j.cnsns.2016.12.001
[9] Sasmal, SK, Mathematical modelling on t-cell mediated adaptive immunity in primary dengue infections, J. Theor. Biol., 429, 229-240 (2017) · Zbl 1382.92180 · doi:10.1016/j.jtbi.2017.06.035
[10] Murphy, BR; Whitehead, SS, Immune response to dengue virus and prospects for a vaccine, Annu. Rev. Immunol., 29, 1, 587-619 (2011) · doi:10.1146/annurev-immunol-031210-101315
[11] Perera, S., Perera, S.S.N.: Mathematical modeling and analysis of innate and humoral immune responses to dengue infections. Int, J. Biomath. 12(7) (2019). Article ID 1950077 · Zbl 1430.34061
[12] Ben-Shachar, R., Koelle, K.: Minimal within-host dengue models highlight the specific roles of the immune response in primary and secondary infections. J. R. Soc. Interface 12 (2015). Article ID 20140886
[13] Comez, MC; Yang, HM, A simple mathematical model to describe antibody dependent enhancement in heterologous secondary infection in dengue, Math. Med. Biol., 36, 411-438 (2019) · Zbl 1501.92014 · doi:10.1093/imammb/dqy016
[14] Nikin-Beers, R.; Ciupe, SM, Modelling original antigenic sin in dengue viral infection, Math. Med. Biol., 35, 2, 257-272 (2018) · Zbl 1404.92119 · doi:10.1093/imammb/dqx002
[15] Borisov, M., Modelling the host immune response to mature and immature dengue viruses, Bull. Math. Biol., 81, 12, 4951-4976 (2019) · Zbl 1430.92090 · doi:10.1007/s11538-019-00664-3
[16] Elaiw, A.M., Alofi, A.S.: Global dynamics of secondary infection with diffusion. J. Math. (2021). doi:10.1155/2021/5585175. Article ID 5585175 · Zbl 1477.92021
[17] Unser, M.: Splines: a perfect fit for medical imaging. In: Proceedings of SPIE, The International Society for Optical Engineering, vol. 4684 (2002)
[18] Mittal, RC; Jain, RK, Numerical solutions of nonlinear Burger’s equation with modified cubic B-splines collocation method, Appl. Math. Comput., 218, 15, 7839-7855 (2012) · Zbl 1242.65209
[19] Mittal, RC; Jain, RK, Redefined cubic B-splines collocation method for solving convection-diffusion equations, Appl. Math. Model., 36, 5555-5573 (2012) · Zbl 1254.76101 · doi:10.1016/j.apm.2012.01.009
[20] Mittal, RC; Jain, RK, Numerical solutions of non-linear Burger’s equation with modified cubic B-splines collocation method, Appl. Math. Comput. (Elsevier), 218, 15, 7839-7855 (2012) · Zbl 1242.65209 · doi:10.1016/j.amc.2012.01.059
[21] Cont, S.D., Boor, C.: Elementary Numerical Analysis: An Algorithmic Approach. McGraw-Hill Book Company · Zbl 0213.41501
[22] Martin, A.; Boyd, I., Variant of the Thomas Algorithm for opposite-bordered tri-diagonal systems of equations, Int. J. Num. Meth. Biomed. Eng., 26, 6, 752-759 (2010) · Zbl 1192.65035
[23] Hale, JK; Lunel, SMV, Introduction to Functional Differential Equations (1993), New York: Springer, New York · Zbl 0787.34002 · doi:10.1007/978-1-4612-4342-7
[24] Henry, D., Geometric Theory of Semi-linear Parabolic Equations (1993), New York: Springer, New York
[25] Wang, L.; Li, M., Diffusion driven instability in reaction-diffusion systems, J. Math. Anal. Appl., 254, 1, 138-153 (2001) · Zbl 0984.35022 · doi:10.1006/jmaa.2000.7220
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.