×

Global well-posedness for the 2D Euler-Boussinesq-Bénard equations with critical dissipation. (English) Zbl 07825940

Summary: This present paper is dedicated to the study of the Cauchy problem of the two-dimensional Euler-Boussinesq-Bénard equations which couple the incompressible Euler equations for the velocity and a transport equation with critical dissipation for the temperature. We show that there is a global unique solution to this model with Yudovich’s type data. This settles the global regularity problem which was remarked by G. Wu and L. Xue [J. Differ. Equations 253, No. 1, 100–125 (2012; Zbl 1305.35119)].

MSC:

35Q35 PDEs in connection with fluid mechanics
35B65 Smoothness and regularity of solutions to PDEs
35R11 Fractional partial differential equations
76B03 Existence, uniqueness, and regularity theory for incompressible inviscid fluids

Citations:

Zbl 1305.35119

References:

[1] Adhikari, D.; Cao, C.; Wu, J., Global regularity results for the 2D Boussinesq equations with vertical dissipation, J. Differ. Equ., 251, 1637-1655, 2011 · Zbl 1232.35111
[2] Altaf, M.; Titi, E.; Gebrael, T.; Knio, O.; Zhao, L.; McCabe, M.; Hoteit, I., Downscaling the 2D Bénard convection equations using continuous data assimilation, Comput. Geosci., 21, 3, 393-410, 2017 · Zbl 1383.65088
[3] Ambrosetti, A.; Prodi, G., A Primer of Nonlinear Analysis, Cambridge Studies in Advanced Mathematics, vol. 34, 1995, Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0818.47059
[4] Bahouri, H.; Chemin, J.-Y.; Danchin, R., Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, vol. 343, 2011, Springer · Zbl 1227.35004
[5] Cao, C.; Li, J.; Titi, E., Global well-posedness of the 3D primitive equations with horizontal viscosity and vertical diffusivity, Physica D, 412, Article 132606 pp., 2020 · Zbl 1484.35315
[6] Cao, Y.; Jolly, M.; Titi, E.; Whitehead, J., Algebraic bounds on the Rayleigh-Bénard attractor, Nonlinearity, 34, 1, 509-531, 2021 · Zbl 1457.35034
[7] Chae, D., Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. Math., 203, 497-513, 2006 · Zbl 1100.35084
[8] Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability, 1981, Dover Publications, Inc. · Zbl 0142.44103
[9] Chen, Q.; Miao, C.; Zhang, Z., A new Bernstein inequality and the 2D dissipative quasigeostrophic equation, Commun. Math. Phys., 271, 821-838, 2007 · Zbl 1142.35069
[10] Constantin, P., Energy spectrum of quasigeostrophic turbulence, Phys. Rev. Lett., 89, 18, Article 184501 pp., 2002
[11] Constantin, P.; Doering, C., Infinite Prandtl number convection, J. Stat. Phys., 94, 159-172, 1999 · Zbl 0935.76083
[12] Danchin, R.; Paicu, M., Global well-posedness issues for the inviscid Boussinesq system with Yudovich’s type data, Commun. Math. Phys., 290, 1-14, 2009 · Zbl 1186.35157
[13] Danchin, R.; Paicu, M., Global existence results for the anisotropic Boussinesq system in dimension two, Math. Models Methods Appl. Sci., 21, 421-457, 2011 · Zbl 1223.35249
[14] Eringen, A., Theory of micropolar fluids, J. Math. Mech., 16, 1-16, 1966
[15] Farhat, A.; Jolly, M.; Titi, E., Continuous data assimilation for the 2D Bénard convection through velocity measurements alone, Physica D, 303, 59-66, 2015 · Zbl 1364.76053
[16] Farhat, A.; Lunasin, E.; Titi, E., Continuous data assimilation for a 2D Bénard convection system through horizontal velocity measurements alone, J. Nonlinear Sci., 27, 1065-1087, 2017 · Zbl 1365.35108
[17] Foias, C.; Manley, O.; Temam, R., Attractors for the Bénard problem: existence and physical bounds on their fractal dimension, Nonlinear Anal., 11, 939-967, 1987 · Zbl 0646.76098
[18] Fujiwara, K.; Georgiev, V.; Ozawa, T., Higher order fractional Leibniz rule, J. Fourier Anal. Appl., 24, 650-665, 2018 · Zbl 1400.46027
[19] Galdi, G.; Padula, M., A new approach to energy theory in the stability of fluid motion, Arch. Ration. Mech. Anal., 110, 187-286, 1990 · Zbl 0719.76035
[20] Gill, A., Atmosphere-Ocean Dynamics, International Geophysics Series, vol. 30, 1982, Academic Press
[21] Hmidi, T., On a maximum principle and its application to the logarithmically critical Boussinesq system, Anal. PDE, 4, 247-284, 2011 · Zbl 1264.35173
[22] Hmidi, T.; Keraani, S., On the global well-posedness of the Boussinesq system with zero viscosity, Indiana Univ. Math. J., 58, 1591-1618, 2009 · Zbl 1178.35303
[23] Hmidi, T.; Keraani, S.; Rousset, F., Global well-posedness for a Boussinesq-Navier-Stokes system with critical dissipation, J. Differ. Equ., 249, 2147-2174, 2010 · Zbl 1200.35228
[24] Hmidi, T.; Keraani, S.; Rousset, F., Global well-posedness for Euler-Boussinesq system with critical dissipation, Commun. Partial Differ. Equ., 36, 420-445, 2011 · Zbl 1284.76089
[25] Hmidi, T.; Zerguine, M., On the global well-posedness of the Euler-Boussinesq system with fractional dissipation, Physica D, 239, 1387-1401, 2010 · Zbl 1194.35329
[26] Ju, N., The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations, Commun. Math. Phys., 255, 161-181, 2005 · Zbl 1088.37049
[27] Kato, T.; Ponce, G., Commutator estimates and the Euler and Navier-Stokes equations, Commun. Pure Appl. Math., 41, 891-907, 1988 · Zbl 0671.35066
[28] Kc, D.; Regmi, D.; Tao, L.; Wu, J., Generalized 2D Euler-Boussinesq equations with a singular velocity, J. Differ. Equ., 257, 82-108, 2014 · Zbl 1291.35221
[29] Kenig, C. E.; Ponce, G.; Vega, L., Well-posedness and scattering results for the generalized Korteweg-de-Vries equation via the contraction principle, Commun. Pure Appl. Math., 46, 527-620, 1993 · Zbl 0808.35128
[30] Kozono, H.; Ogawa, T.; Taniuchi, Y., The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations, Math. Z., 242, 251-278, 2002 · Zbl 1055.35087
[31] Li, D., On Kato-Ponce and fractional Leibniz, Rev. Mat. Iberoam., 35, 23-100, 2019 · Zbl 1412.35261
[32] Li, Z., Global well-posedness of the 2D Euler-Boussinesq system with stratification effects, Math. Methods Appl. Sci., 40, 5212-5221, 2017 · Zbl 1387.35478
[33] Lukaszewicz, G., Micropolar Fluids-Theory and Applications, 1999, Birkhäuser: Birkhäuser Basel · Zbl 0923.76003
[34] Lukaszewicz, G., Long time behavior of 2D micropolar fluid flows, Math. Comput. Model., 34, 487-509, 2001 · Zbl 1020.76003
[35] Ma, T.; Wang, S., Rayleigh Bénard convection: dynamics and structure in the physical space, Commun. Math. Sci., 5, 553-574, 2007 · Zbl 1133.35426
[36] Majda, A.; Bertozzi, A., Vorticity and Incompressible Flow, 2001, Cambridge University Press: Cambridge University Press Cambridge
[37] Melkemi, O., Global existence for the 2D anisotropic Bénard equations with partial variable viscosity, Math. Methods Appl. Sci., 46, 14, 15020-15032, 2023 · Zbl 1532.35384
[38] Mulone, G.; Rionero, S., Necessary and sufficient conditions for nonlinear stability in the magnetic Bénard problem, Arch. Ration. Mech. Anal., 166, 197-218, 2003 · Zbl 1022.76020
[39] Pedlosky, J., Geophysical fluid dynamics, 1987, Springer-Verlag: Springer-Verlag New York · Zbl 0713.76005
[40] Rabinowitz, P., Existence and nonuniqueness of rectangular solutions of the Bénard problem, Arch. Ration. Mech. Anal., 29, 32-57, 1968 · Zbl 0164.28704
[41] Silvestre, L., On the differentiability of the solution to an equation with drift and fractional diffusion, Indiana Univ. Math. J., 61, 557-584, 2012 · Zbl 1308.35042
[42] Temam, R., Navier-Stokes Equations, revised version, Stud. Math. Appl., vol. 2, 1979, North-Holland · Zbl 0426.35003
[43] Temam, R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, vol. 68, 1997, Springer: Springer New York · Zbl 0871.35001
[44] Wu, G.; Xue, L., Global well-posedness for the 2D inviscid Bénard system with fractional diffusivity and Yudovich’s type data, J. Differ. Equ., 253, 100-125, 2012 · Zbl 1305.35119
[45] Xu, X.; Xue, L., Yudovich type solution for the 2D inviscid Boussinesq system with critical and supercritical dissipation, J. Differ. Equ., 256, 3179-3207, 2014 · Zbl 1452.76030
[46] Xue, L.; Ye, Z., On the differentiability issue of the drift-diffusion equation with nonlocal Lévy-type diffusion, Pac. J. Math., 293, 471-510, 2018 · Zbl 1379.35049
[47] Ye, Z., Blow-up criterion of smooth solutions for the Boussinesq equations, Nonlinear Anal., 110, 97-103, 2014 · Zbl 1300.35109
[48] Ye, Z., Regularity criterion of the 2D Bénard equations with critical and supercritical dissipation, Nonlinear Anal., 156, 111-143, 2017 · Zbl 1367.35135
[49] Ye, Z., Some new regularity criteria for the 2D Euler-Boussinesq equations via the temperature, Acta Appl. Math., 157, 141-169, 2018 · Zbl 1409.35175
[50] Ye, Z., An alternative approach to global regularity for the 2D Euler-Boussinesq equations with critical dissipation, Nonlinear Anal., 190, Article 111591 pp., 2020 · Zbl 1431.35142
[51] Yudovich, V., Non-stationary flows of an ideal incompressible fluid, Akad. Nauk SSSR. Ž. Vyčisl. Mat. Mat. Fiz., 3, 1032-1066, 1963 · Zbl 0129.19402
[52] Zhang, R.; Fan, M.; Li, S., Global well-posedness of incompressible Bénard problem with zero dissipation or zero thermal diffusivity, Appl. Math. Comput., 321, 442-449, 2018 · Zbl 1426.35193
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.