×

On the isolated points of the operators satisfying absolute condition inequality. (English) Zbl 07825930

Summary: A \(m\)-quasi class \(A_k\), denoted as \(M\in\mathcal{Q}(A k,m)\), is defined as an operator \(M\) acting on a complex Hilbert space \(\mathcal{H}\), provided that the following condition holds true: \[ M^{*m}|M^{k+1}|^{\frac{2}{k+1}}M^m \geq M^{*m}|M|^2 M^m, \] where both \(k\) and \(m\) are positive integers. In this research, we unveil fundamental structural characteristics of these operators. Leveraging these findings, we can establish that \(P\) is self-adjoint if \(P\) represents the Riesz idempotent associated with the isolated point \(\lambda\) in the spectrum of \(M\in\mathcal{Q}(A_k,m)\). Additionally, we provide a necessary and sufficient condition for \(M\otimes N\) to belong to \(\mathcal{QA}_k\) when both \(M\) and \(N\) are non-zero.

MSC:

47A55 Perturbation theory of linear operators
47A53 (Semi-) Fredholm operators; index theories
47B20 Subnormal operators, hyponormal operators, etc.
47A10 Spectrum, resolvent
47A11 Local spectral properties of linear operators
Full Text: DOI

References:

[1] Aiena, P.: Fredholm and local spectral theory with applications to multipliers, Kluwer, (2004) · Zbl 1077.47001
[2] Ando, T., Operators with a norm condition, Acta Sci. Math., 33, 169-178, 1972 · Zbl 0244.47021
[3] Aluthge, A.; Wang, D., \(w\)-hyponormal operators, Integral Equ. Operat. Theory, 36, 1-10, 2000 · Zbl 0938.47021 · doi:10.1007/BF01236285
[4] Bishop, E., A duality theorem for an arbitrary operator, Pacific J. Math., 9, 2, 379-397, 1959 · Zbl 0086.31702 · doi:10.2140/pjm.1959.9.379
[5] Caradus, S.R.: Operators of Riesz type, Pacific J. Math. 18 (1)(1966) · Zbl 0144.38601
[6] Conway, JB, A course in Functional Analysis, 1985, New York: Springer-Verlag, New York · Zbl 0558.46001 · doi:10.1007/978-1-4757-3828-5
[7] Chō, SR; Yamazaki, T., An operator transform from class \(A\) to the class of hyponormal operators and its application, Integral Equ. Operator Theory, 53, 497-508, 2005 · Zbl 1098.47006 · doi:10.1007/s00020-004-1332-6
[8] Finch, JK, The single valued extension property on a Banach space, Pacific J. Math., 58, 61-69, 1975 · Zbl 0315.47002 · doi:10.2140/pjm.1975.58.61
[9] Furuta, T.; Ito, M.; Yamazaki, T., A subclass of paranormal operators including class of \(log\)-hyponormal and several related classes, Sci. Math., 1, 389-403, 1998 · Zbl 0936.47009
[10] Heuser, H. G.: Functional analysis, Wiley (1982) · Zbl 0465.47001
[11] Ito, M., Some classes of operators associated with generalized Aluthge transformation, Sut. J. Math., 35, 149-165, 1999 · Zbl 0935.47013 · doi:10.55937/sut/991985425
[12] Ito, M., Several properties on class \(A\) including \(p\)-hyponormal and \(\log \)-hyponormal operators, Math. Inequal. Appl., 2, 569-578, 1999 · Zbl 0946.47014
[13] Jeon, IH; Duggal, BP, On operators with an absolute value condition, J. Korean Math. Soc., 41, 617-627, 2004 · Zbl 1076.47015 · doi:10.4134/JKMS.2004.41.4.617
[14] Jeon, IH; Kim, IH, On operators satisfying \(T^*|T^2|T\ge T^*|T|^2T\), Lin. Alg. Appl., 418, 854-862, 2006 · Zbl 1109.47005 · doi:10.1016/j.laa.2006.02.040
[15] Jin-chuan, Hou, On tensor products of operators, Acta. Math. Sinica (N.S), 9, 195-202, 1993 · Zbl 0792.47020 · doi:10.1007/BF02560050
[16] Kim, IH, Tensor products of log-hyponormal operators, Bull. Korean Math. Soc., 42, 269-277, 2005 · Zbl 1089.47022 · doi:10.4134/BKMS.2005.42.2.269
[17] Kim, I. H., Weyl’s theorem and tensor product for operators satisfying \(T^{*k}|T^2|T^k\ge T^{*k}|T|^2T^k\), J. Korean Math. Soc, 47, 2, 351-361, 2010 · Zbl 1198.47020 · doi:10.4134/JKMS.2010.47.2.351
[18] Kimura, F., Analysis of non-normal operators via Aluthge transformation, Integral Equ. Operat. Theory, 50, 3, 375-384, 1995 · Zbl 1057.47030 · doi:10.1007/s00020-003-1231-2
[19] Laursen, KB, Operators with finite ascent, Pacific J. Math., 152, 323-336, 1992 · Zbl 0783.47028 · doi:10.2140/pjm.1992.152.323
[20] Laursen, KB; Neumann, MM, An introduction to local spectral theory, 2000, Oxford: Clarendon, Oxford · Zbl 0957.47004 · doi:10.1093/oso/9780198523819.001.0001
[21] Li, X.; Gau, F., On properties of \(k\)-quasi-class \(A(n)\) operators, J. Ineq. Appl., 2014, 91, 2014 · Zbl 1309.47017 · doi:10.1186/1029-242X-2014-91
[22] Hansen, F., An equality, Math. Ann., 246, 249-250, 1980 · Zbl 0407.47012 · doi:10.1007/BF01371046
[23] Panayappan, S.; Jayanthi, N.; Sumathi, D., Weyl’s theorem and tensor product for class \(A_k\) operators, Pure, Math. Sci., 1, 13-23, 2012
[24] Panayappan, S.; Jayanthi, N.; Sumathi, D., Weyl’s theorem and tensor product for \(m\)-quasi class \(A_k\) operators, Sci. Magna, 7, 2, 1-10, 2011
[25] Rashid, MHM, Spectrum of \(k\)-quasi-class \(A_n\) operators, N. Z. J. Math., 50, 61-70, 2020 · Zbl 1528.47002 · doi:10.53733/64
[26] Rashid, MHM, On Quasi-star class \((A, k)\) operators, Nonlinear Anal. Forum, 22, 1, 45-57, 2017 · Zbl 1410.47005
[27] Rashid, MHM, On operators satisfying \(T^{*m}(T^*|T|^{2k}T)^{\frac{1}{k+1}}T^m\ge T^{*m}|T|^2T^m\), Commun. Korean Math. Soc., 32, 3, 661-676, 2017 · Zbl 06847400 · doi:10.4134/CKMS.c160191
[28] Saito, T.: Hyponormal operators and related topics. Lecture notes in Mathematics, vol. 247, Springer-Verlag, (1971) · Zbl 0234.47025
[29] Stampfli, JG, Hyponormal operators and spectral density, Trans. Amer. Math. Soc., 117, 469-476, 1965 · Zbl 0139.31201 · doi:10.1090/S0002-9947-1965-0173161-3
[30] Stochel, J., Seminormality of operators from their tensor product, Proc. Amer. Math. Soc., 124, 435-440, 1996 · Zbl 0855.47018 · doi:10.1090/S0002-9939-96-03017-1
[31] Tanahashi, K.; Jeon, In Ho; Kim, In H.; Uchiyama, A., Quasinilpotent part of class \(A\) or \((p,k)\)-quasihyponormal, Operat. Theory Adv. Appl., 187, 199-210, 2008 · Zbl 1175.47023
[32] Tanahashi, K.; Uchiyama, A., A note on \(\ast \)-paranormal operators and related classes of operators, Bull. Korean Math. Soc., 51, 2, 357-371, 2014 · Zbl 1296.47022 · doi:10.4134/BKMS.2014.51.2.357
[33] Yuan, JT; Ji, GX, On \((n, k)\)-quasiparanormal operators, Studia Math., 209, 289-301, 2012 · Zbl 1262.47032 · doi:10.4064/sm209-3-6
[34] Uchiyama, A.; Tanahashi, K., On the Riesz idempotent of class \(A\) operators, Math. Inequal. Appl., 5, 291-298, 2002 · Zbl 1016.47003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.