×

Cluster variables for affine Lie-Poisson systems. (English. Russian original) Zbl 07824560

Theor. Math. Phys. 217, No. 3, 1987-2004 (2023); translation from Teor. Mat. Fiz. 217, No. 3, 672-693 (2023).
Summary: We show that having any planar (cyclic or acyclic) directed network on a disc with the only condition that all \(n_1+m\) sources are separated from all \(n_2+m\) sinks, we can construct a cluster-algebra realization of elements of an affine Lie-Poisson algebra \(R(\lambda,\mu){\stackrel{1}{T}}(\lambda){\stackrel{2}{T}}(\mu) ={\stackrel{2}{T}}(\mu){\stackrel{1}{T}}(\lambda)R(\lambda,\mu)\) with \(({n_1\times n_2})\)-matrices \(T(\lambda)\). Upon satisfaction of some invertibility conditions, we can construct a realization of a quantum loop algebra. Having the quantum loop algebra, we can also construct a realization of the twisted Yangian algebra or of the quantum reflection equation. For each such a planar network, we can therefore construct a symplectic leaf of the corresponding infinite-dimensional algebra.

MSC:

81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
81R12 Groups and algebras in quantum theory and relations with integrable systems
16T25 Yang-Baxter equations

References:

[1] Chekhov, L. O.; Shapiro, M., Log-canonical coordinates for symplectic groupoid and cluster algebras, Int. Math. Res. Notices, 2023, 9565-9652 (2023) · Zbl 1516.30057 · doi:10.1093/imrn/rnac101
[2] Chekhov, L.; Mazzocco, M.; Rubtsov, V., Algebras of quantum monodromy data and decorated character varieties (0000)
[3] Fock, V.; Goncharov, A., Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci., 103, 1-211 (2006) · Zbl 1099.14025 · doi:10.1007/s10240-006-0039-4
[4] Gavrilik, A. M.; Klimyk, A. U., \(q\)-Deformed orthogonal and pseudo-orthogonal algebras and their representations, Lett. Math. Phys., 21, 215-220 (1991) · Zbl 0735.17020 · doi:10.1007/BF00420371
[5] Nelson, J. E.; Regge, T., Homotopy groups and \((2+1)\)-dimensional quantum gravity, Nucl. Phys. B, 328, 190-199 (1989) · doi:10.1016/0550-3213(89)90099-0
[6] Nelson, J. E.; Regge, T.; Zertuche, F., Homotopy groups and \((2+1)\)-dimensional quantum de Sitter gravity, Nucl. Phys. B, 339, 516-532 (1990) · doi:10.1016/0550-3213(90)90359-L
[7] Ugaglia, M., On a Poisson structure on the space of Stokes matrices, Internat. Math. Res. Notices, 1999, 473-493 (1999) · Zbl 0939.34073 · doi:10.1155/S1073792899000240
[8] Bondal, A. I., A symplectic groupoid of triangular bilinear forms and the braid group, Izv. Math., 68, 659-708 (2004) · Zbl 1084.58502 · doi:10.1070/IM2004v068n04ABEH000495
[9] Fock, V. V.; Chekhov, L. O., Quantum mapping class group, pentagon relation, and geodesics, Proc. Steklov Inst. Math., 226, 149-163 (1999) · Zbl 0983.32021
[10] Chekhov, L. O.; Fock, V. V., Observables in 3d gravity and geodesic algebras, Czech. J. Phys., 50, 1201-1208 (2000) · Zbl 1087.81510 · doi:10.1023/A:1022844520574
[11] Molev, A., Yangians and Classical Lie Algebras (2007), Providence, RI: Amer. Math. Soc., Providence, RI · Zbl 1141.17001
[12] Gekhtman, M.; Shapiro, M.; Vainshtein, A., Cluster algebra and Poisson geometry, Moscow Math. J., 3, 899-934 (2003) · Zbl 1057.53064 · doi:10.17323/1609-4514-2003-3-3-899-934
[13] Gekhtman, M.; Shapiro, M.; Vainshtein, A., Poisson geometry of directed networks in a disc, Selecta Math. (N.S.), 15, 61-103 (2009) · Zbl 1186.53095 · doi:10.1007/s00029-009-0523-z
[14] Gekhtman, M.; Shapiro, M.; Vainshtein, A., Poisson geometry of directed networks in an annulus, J. Eur. Math. Soc., 14, 541-570 (2012) · Zbl 1238.53060 · doi:10.4171/jems/311
[15] Chekhov, L.; Mazzocco, M., Isomonodromic deformations and twisted Yangians arising in Teichmüller theory, Adv. Math., 226, 4731-4775 (2011) · Zbl 1216.32008 · doi:10.1016/j.aim.2010.12.017
[16] Drinfel’d, V. G., Hopf algebras and the quantum Yang-Baxter equation, Soviet Math. Dokl., 32, 256-258 (1985) · Zbl 0588.17015
[17] Drinfeld, V. G., Quantum groups, Proceedings of the International Congress of Mathematicians, 798-820 (1987), Providence, RI: AMS, Providence, RI · Zbl 0667.16003
[18] Drinfeld, V. G., A new realization of Yangians and of quantum affine algebras, Soviet Math. Dokl., 36, 212-216 (1988) · Zbl 0667.16004
[19] Fomin, S.; Zelevinsky, A., Cluster algebras I: Foundations, J. Amer. Math. Soc., 15, 497-529 (2002) · Zbl 1021.16017 · doi:10.1090/S0894-0347-01-00385-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.