×

Elliptic genera from classical error-correcting codes. (English) Zbl 07821613

Summary: We consider chiral fermionic conformal field theories constructed from classical error-correcting codes and provide a systematic way of computing their elliptic genera. We exploit the U(1) current of the \(\mathcal{N} = 2\) superconformal algebra to obtain the U(1)-graded partition function that is invariant under the modular transformation and the spectral flow. We demonstrate our method by constructing extremal \(\mathcal{N} = 2\) elliptic genera from classical codes for relatively small central charges. Also, we give near-extremal elliptic genera and decompose them into \(\mathcal{N} = 2\) superconformal characters.

MSC:

81-XX Quantum theory

References:

[1] Frenkel, IB; Lepowsky, J.; Meurman, A., A natural representation of the Fischer-Griess monster with the modular function j as character, Proc. Nat. Acad. Sci., 81, 3256 (1984) · Zbl 0543.20016 · doi:10.1073/pnas.81.10.3256
[2] I. Frenkel, J. Lepowsky and A. Meurman, Vertex operator algebras and the monster, Academic press (1988) [INSPIRE]. · Zbl 0674.17001
[3] Dolan, L.; Goddard, P.; Montague, P., Conformal field theories, representations and lattice constructions, Commun. Math. Phys., 179, 61 (1996) · Zbl 0878.17025 · doi:10.1007/BF02103716
[4] Conway, JH; Norton, SP, Monstrous moonshine, Bull. London Math. Soc., 11, 308 (1979) · Zbl 0424.20010 · doi:10.1112/blms/11.3.308
[5] Dixon, LJ; Ginsparg, PH; Harvey, JA, Beauty and the beast: superconformal symmetry in a monster module, Commun. Math. Phys., 119, 221 (1988) · Zbl 0657.17011 · doi:10.1007/BF01217740
[6] N. Benjamin, E. Dyer, A.L. Fitzpatrick and S. Kachru, An extremal N = 2 superconformal field theory, J. Phys. A48 (2015) 495401 [arXiv:1507.00004] [INSPIRE]. · Zbl 1330.81167
[7] Harrison, SM, Extremal chiral N = 4 SCFT with c = 24, JHEP, 11, 006 (2016) · Zbl 1390.83062 · doi:10.1007/JHEP11(2016)006
[8] G.W. Moore and R.K. Singh, Beauty and the beast. Part 2. Apprehending the missing supercurrent, arXiv:2309.02382 [INSPIRE].
[9] Gaiotto, D.; Johnson-Freyd, T., Holomorphic SCFTs with small index, Can. J. Math., 74, 573 (2022) · Zbl 1504.17029 · doi:10.4153/S0008414X2100002X
[10] Kawabata, K.; Yahagi, S., Fermionic CFTs from classical codes over finite fields, JHEP, 05, 096 (2023) · Zbl 07701911 · doi:10.1007/JHEP05(2023)096
[11] Dymarsky, A.; Shapere, A., Quantum stabilizer codes, lattices, and CFTs, JHEP, 21, 160 (2020)
[12] Kawabata, K.; Nishioka, T.; Okuda, T., Narain CFTs from qudit stabilizer codes, SciPost Phys. Core, 6, 035 (2023) · doi:10.21468/SciPostPhysCore.6.2.035
[13] Alam, YF, Narain CFTs from nonbinary stabilizer codes, JHEP, 12, 127 (2023) · Zbl 07807244 · doi:10.1007/JHEP12(2023)127
[14] A. Dymarsky and A. Shapere, Solutions of modular bootstrap constraints from quantum codes, Phys. Rev. Lett.126 (2021) 161602 [arXiv:2009.01236] [INSPIRE].
[15] Henriksson, J.; Kakkar, A.; McPeak, B., Narain CFTs and quantum codes at higher genus, JHEP, 04, 011 (2023) · Zbl 07693899 · doi:10.1007/JHEP04(2023)011
[16] Dymarsky, A.; Kalloor, RR, Fake Z, JHEP, 06, 043 (2023) · Zbl 07716749 · doi:10.1007/JHEP06(2023)043
[17] Dymarsky, A.; Shapere, A., Comments on the holographic description of Narain theories, JHEP, 10, 197 (2021) · Zbl 1476.83136 · doi:10.1007/JHEP10(2021)197
[18] Henriksson, J.; Kakkar, A.; McPeak, B., Classical codes and chiral CFTs at higher genus, JHEP, 05, 159 (2022) · Zbl 1522.81502 · doi:10.1007/JHEP05(2022)159
[19] Angelinos, N.; Chakraborty, D.; Dymarsky, A., Optimal Narain CFTs from codes, JHEP, 11, 118 (2022) · Zbl 1536.81107 · doi:10.1007/JHEP11(2022)118
[20] Dymarsky, A.; Sharon, A., Non-rational Narain CFTs from codes over F_4, JHEP, 11, 016 (2021) · Zbl 1521.81302 · doi:10.1007/JHEP11(2021)016
[21] M. Buican, A. Dymarsky and R. Radhakrishnan, Quantum codes, CFTs, and defects, JHEP03 (2023) 017 [arXiv:2112.12162] [INSPIRE].
[22] Furuta, Y., Relation between spectra of Narain CFTs and properties of associated boolean functions, JHEP, 09, 146 (2022) · Zbl 1531.81072 · doi:10.1007/JHEP09(2022)146
[23] Yahagi, S., Narain CFTs and error-correcting codes on finite fields, JHEP, 08, 058 (2022) · Zbl 1522.81066 · doi:10.1007/JHEP08(2022)058
[24] Henriksson, J.; McPeak, B., Averaging over codes and an SU(2) modular bootstrap, JHEP, 11, 035 (2023) · Zbl 07795751 · doi:10.1007/JHEP11(2023)035
[25] Y. Furuta, On the rationality and the code structure of a Narain CFT, and the simple current orbifold, arXiv:2307.04190 [INSPIRE].
[26] Kawabata, K.; Nishioka, T.; Okuda, T., Supersymmetric conformal field theories from quantum stabilizer codes, Phys. Rev. D, 108, L081901 (2023) · doi:10.1103/PhysRevD.108.L081901
[27] K. Kawabata, T. Nishioka and T. Okuda, Narain CFTs from quantum codes and their Z_2gauging, arXiv:2308.01579 [INSPIRE].
[28] Leech, J.; Sloane, NJA, Sphere packings and error-correcting codes, Canadian J. Math., 23, 718 (1971) · Zbl 0207.52205 · doi:10.4153/CJM-1971-081-3
[29] J.H. Conway and N.J.A. Sloane, Sphere packings, lattices and groups, Springer, New York, NY, U.S.A. (1999) [doi:10.1007/978-1-4757-6568-7] [INSPIRE]. · Zbl 0915.52003
[30] Witten, E., Constraints on supersymmetry breaking, Nucl. Phys. B, 202, 253 (1982) · doi:10.1016/0550-3213(82)90071-2
[31] E. Witten, Supersymmetry and Morse theory, J. Diff. Geom.17 (1982) 661 [INSPIRE]. · Zbl 0499.53056
[32] Witten, E., Elliptic genera and quantum field theory, Commun. Math. Phys., 109, 525 (1987) · Zbl 0625.57008 · doi:10.1007/BF01208956
[33] J.-P. Serre, A course in arithmetic, Springer, New York, NY, U.S.A. (1973) [doi:10.1007/978-1-4684-9884-4]. · Zbl 0256.12001
[34] Bouarroudj, S.; Krutov, A.; Leites, D.; Shchepochkina, I., Non-degenerate invariant (super)symmetric bilinear forms on simple Lie (super)algebras, Algebr. Represent. Theory, 21, 5 (2018) · Zbl 1421.17003 · doi:10.1007/s10468-018-9802-8
[35] Schwimmer, A.; Seiberg, N., Comments on the N = 2, N = 3, N = 4 superconformal algebras in two-dimensions, Phys. Lett. B, 184, 191 (1987) · doi:10.1016/0370-2693(87)90566-1
[36] Lerche, W.; Vafa, C.; Warner, NP, Chiral rings in N = 2 superconformal theories, Nucl. Phys. B, 324, 427 (1989) · doi:10.1016/0550-3213(89)90474-4
[37] E. Witten, Three-dimensional gravity revisited, arXiv:0706.3359 [INSPIRE].
[38] Höhn, G., Conformal designs based on vertex operator algebras, Adv. Math., 217, 2301 (2008) · Zbl 1157.17008 · doi:10.1016/j.aim.2007.11.003
[39] M. Jankiewicz and T.W. Kephart, Modular invariants and Fischer-Griess monster, in the proceedings of the 26^thinternational colloquium on group theoretical methods in physics, (2006) [math-ph/0608001] [INSPIRE].
[40] Gaberdiel, MR, Extremal N = (2, 2) 2D conformal field theories and constraints of modularity, Commun. Num. Theor. Phys., 2, 743 (2008) · Zbl 1214.81245 · doi:10.4310/CNTP.2008.v2.n4.a3
[41] Cheng, MCN, Mock modular Mathieu moonshine modules, Res. Math. Sci., 2, 13 (2015) · Zbl 1395.17061 · doi:10.1186/s40687-015-0034-9
[42] Lerche, W.; Warner, NP, Index theorems in N = 2 superconformal theories, Phys. Lett. B, 205, 471 (1988) · doi:10.1016/0370-2693(88)90980-X
[43] Kawai, T.; Yamada, Y.; Yang, S-K, Elliptic genera and N = 2 superconformal field theory, Nucl. Phys. B, 414, 191 (1994) · Zbl 0980.58500 · doi:10.1016/0550-3213(94)90428-6
[44] R. Dijkgraaf, J.M. Maldacena, G.W. Moore and E.P. Verlinde, A black hole farey tail, hep-th/0005003 [INSPIRE].
[45] G.W. Moore, Strings and arithmetic, in the proceedings of the Les Houches school of physics: frontiers in number theory, physics and geometry, (2007), p. 303 [doi:10.1007/978-3-540-30308-4_8] [hep-th/0401049] [INSPIRE]. · Zbl 1193.81085
[46] Manschot, J.; Moore, GW, A modern farey tail, Commun. Num. Theor. Phys., 4, 103 (2010) · Zbl 1259.58005 · doi:10.4310/CNTP.2010.v4.n1.a3
[47] Manschot, J., On the space of elliptic genera, Commun. Num. Theor. Phys., 2, 803 (2008) · Zbl 1214.58009 · doi:10.4310/CNTP.2008.v2.n4.a4
[48] Y. Tachikawa, M. Yamashita and K. Yonekura, Remarks on mod-2 elliptic genus, arXiv:2302.07548 [INSPIRE].
[49] Witten, E., On the Landau-Ginzburg description of N = 2 minimal models, Int. J. Mod. Phys. A, 9, 4783 (1994) · Zbl 0985.81718 · doi:10.1142/S0217751X9400193X
[50] K. Hori et al., Mirror symmetry, volume 1 of Clay mathematics monographs, AMS, Providence, RI, U.S.A. (2003). · Zbl 1044.14018
[51] M. Eichler and D. Zagier, The theory of Jacobi forms, Birkhäuser, Boston, MA, U.S.A. (1985). · Zbl 0554.10018
[52] Niebur, D., Construction of automorphic forms and integrals, Trans. Amer. Math. Soc., 191, 373 (1974) · Zbl 0306.30023 · doi:10.1090/S0002-9947-1974-0344196-8
[53] C.A. Keller and J.M. Quinones, On the space of slow growing weak Jacobi forms, arXiv:2011.02611 [INSPIRE].
[54] MacWilliams, FJ; Sloane, NJA, The theory of error-correcting codes (1977), The Netherlands: Elsevier, The Netherlands · Zbl 0369.94008
[55] T.M. Thompson, From error-correcting codes through sphere packings to simple groups, Mathematical Association of America, U.S.A. (1983). · Zbl 0545.94016
[56] O. Regev, On lattices, learning with errors, random linear codes, and cryptography, in the proceedings of the 37^thannual ACM symposium on theory of computing, (2005) [doi:10.1145/1060590.1060603] [arXiv:2401.03703] [INSPIRE]. · Zbl 1192.94106
[57] Elkies, ND, Lattices, linear codes, and invariants, part I, Notices AMS, 47, 1238 (2000) · Zbl 0992.11041
[58] N.D. Elkies, Lattices, linear codes, and invariants, part II, Notices AMS47 (2000) 1382 · Zbl 1047.11065
[59] T. Høholdt and J. Justesen, A course in error-correcting codes, EMS Press (2004) [doi:10.4171/001]. · Zbl 1048.94001
[60] G. Nebe, E.M. Rains and N.J.A. Sloane, Self-dual codes and invariant theory, Springer, Berlin, Heidelberg, Germany (2006) [doi:10.1007/3-540-30731-1]. · Zbl 1173.94447
[61] N.D. Elkies, Lattices and codes with long shadows, math/9906086.
[62] W. Lerche, A.N. Schellekens and N.P. Warner, Lattices and strings, Phys. Rept.177 (1989) 1 [INSPIRE]. · Zbl 0942.53510
[63] V. Kac, Vertex algebras for beginners, American Mathematical Society, Providence, RI, U.S.A. (1996) [INSPIRE]. · Zbl 0861.17017
[64] P. Boyle Smith, Y.-H. Lin, Y. Tachikawa and Y. Zheng, Classification of chiral fermionic CFTs of central charge ≤ 16, arXiv:2303.16917 [INSPIRE].
[65] B.C. Rayhaun, Bosonic rational conformal field theories in small genera, chiral fermionization, and symmetry/subalgebra duality, arXiv:2303.16921 [INSPIRE].
[66] G. Höhn and S. Möller, Classification of self-dual vertex operator superalgebras of central charge at most 24, arXiv:2303.17190 [INSPIRE].
[67] Conway, J.; Sloane, N., A new upper bound on the minimal distance of self-dual codes, IEEE Trans. Inform. Theory, 36, 1319 (1990) · Zbl 0713.94016 · doi:10.1109/18.59931
[68] Gaiotto, D.; Yin, X., Genus two partition functions of extremal conformal field theories, JHEP, 08, 029 (2007) · Zbl 1326.81177 · doi:10.1088/1126-6708/2007/08/029
[69] Gaberdiel, MR, Constraints on extremal self-dual CFTs, JHEP, 11, 087 (2007) · Zbl 1245.81239
[70] Yin, X., Partition functions of three-dimensional pure gravity, Commun. Num. Theor. Phys., 2, 285 (2008) · Zbl 1154.83306 · doi:10.4310/CNTP.2008.v2.n2.a1
[71] Yin, X., On non-handlebody instantons in 3D gravity, JHEP, 09, 120 (2008) · Zbl 1245.83010 · doi:10.1088/1126-6708/2008/09/120
[72] Maloney, A.; Witten, E., Quantum gravity partition functions in three dimensions, JHEP, 02, 029 (2010) · Zbl 1270.83022 · doi:10.1007/JHEP02(2010)029
[73] Gaiotto, D., Monster symmetry and extremal CFTs, JHEP, 11, 149 (2012) · Zbl 1397.81306 · doi:10.1007/JHEP11(2012)149
[74] Li, W.; Song, W.; Strominger, A., Chiral gravity in three dimensions, JHEP, 04, 082 (2008) · Zbl 1246.83158 · doi:10.1088/1126-6708/2008/04/082
[75] Gaberdiel, MR; Keller, CA, Modular differential equations and null vectors, JHEP, 09, 079 (2008) · Zbl 1245.81240 · doi:10.1088/1126-6708/2008/09/079
[76] Gaberdiel, MR; Keller, CA; Volpato, R., Genus two partition functions of chiral conformal field theories, Commun. Num. Theor. Phys., 4, 295 (2010) · Zbl 1218.81092 · doi:10.4310/CNTP.2010.v4.n2.a2
[77] Benjamin, N., Small black holes and near-extremal CFTs, JHEP, 08, 023 (2016) · Zbl 1390.83176 · doi:10.1007/JHEP08(2016)023
[78] J.-B. Bae, K. Lee and S. Lee, Bootstrapping pure quantum gravity in AdS_3, arXiv:1610.05814 [INSPIRE].
[79] F. Ferrari and S.M. Harrison, Properties of extremal CFTs with small central charge, arXiv:1710.10563 [INSPIRE].
[80] M. Harada and A. Munemasa, Database of self-dual codes, https://www.math.is.tohoku.ac.jp/ munemasa/selfdualcodes.htm.
[81] G. Nebe and N. Sloane, A catalogue of lattices, http://www.math.rwth-aachen.de/ Gabriele.Nebe/LATTICES/.
[82] O’Connor, RE; Pall, G., The construction of integral quadratic forms of determinant 1, Duke Math. J., 11, 319 (1944) · Zbl 0060.11103 · doi:10.1215/S0012-7094-44-01127-0
[83] M. Grassl, Code tables, http://www.codetables.de/.
[84] Eguchi, T.; Ooguri, H.; Tachikawa, Y., Notes on the K3 surface and the Mathieu group M_24, Exper. Math., 20, 91 (2011) · Zbl 1266.58008 · doi:10.1080/10586458.2011.544585
[85] V. Anagiannis and M.C.N. Cheng, TASI lectures on moonshine, PoSTASI2017 (2018) 010 [arXiv:1807.00723] [INSPIRE].
[86] A. Dabholkar, S. Murthy and D. Zagier, Quantum black holes, wall crossing, and mock modular forms, arXiv:1208.4074 [INSPIRE].
[87] E. D’Hoker and J. Kaidi, Lectures on modular forms and strings, arXiv:2208.07242 [INSPIRE].
[88] V.K. Dobrev, Characters of the unitarizable highest weight modules over the N = 2 superconformal algebras, Phys. Lett. B186 (1987) 43 [INSPIRE].
[89] E. Kiritsis, Character formulae and the structure of the representations of the N = 1, N = 2 superconformal algebras, Int. J. Mod. Phys. A3 (1988) 1871 [INSPIRE].
[90] Y. Matsuo, Character formula of C < 1 unitary representation of N = 2 superconformal algebra, Prog. Theor. Phys.77 (1987) 793 [INSPIRE].
[91] Eguchi, T.; Taormina, A., On the unitary representations of N = 2 and N = 4 superconformal algebras, Phys. Lett. B, 210, 125 (1988) · doi:10.1016/0370-2693(88)90360-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.