×

Efficiently evaluating loop integrals in the EFTofLSS using QFT integrals with massive propagators. (English) Zbl 07821485

Summary: We develop a new way to analytically calculate loop integrals in the Effective Field Theory of Large Scale-Structure. Previous available methods show severe limitations beyond the one-loop power spectrum due to analytical challenges and computational and memory costs. Our new method is based on fitting the linear power spectrum with cosmology-independent functions that resemble integer powers of quantum field theory massive propagators with complex masses. A remarkably small number of them is sufficient to reach enough accuracy. Similarly to former approaches, the cosmology dependence is encoded in the coordinate vector of the expansion of the linear power spectrum in our basis. We first produce cosmology-independent tensors where each entry is the loop integral evaluated on a given combination of basis vectors. For each cosmology, the evaluation of a loop integral amounts to contracting this tensor with the coordinate vector of the linear power spectrum. The 3-dimensional loop integrals for our basis functions can be evaluated using techniques familiar to particle physics, such as recursion relations and Feynman parametrization. We apply our formalism to evaluate the one-loop bispectrum of galaxies in redshift space. The final analytical expressions are quite simple and can be evaluated with little computational and memory cost. We show that the same expressions resolve the integration of all one-loop \(N\)-point function in the EFTofLSS. This method, which is originally presented here, has already been applied in the first one-loop bispectrum analysis of the BOSS data to constraint \(\Lambda\)CDM parameters and primordial non-Gaussianities [G. D’Amico et al., “The BOSS bispectrum analysis at one loop from the effective field theory of large-scale structure”, Preprint, arXiv:2206.08327; “Limits on primordial non-Gaussianities from BOSS galaxy-clustering data, Preprint, arXiv:2201.11518].

MSC:

81T12 Effective quantum field theories
81Q30 Feynman integrals and graphs; applications of algebraic topology and algebraic geometry
35B20 Perturbations in context of PDEs
81V05 Strong interaction, including quantum chromodynamics
83F05 Relativistic cosmology
47A10 Spectrum, resolvent
85A15 Galactic and stellar structure

Software:

FAST-PT; PyBird

References:

[1] G. D’Amico et al., The BOSS bispectrum analysis at one loop from the Effective Field Theory of Large-Scale Structure, arXiv:2206.08327 [INSPIRE].
[2] G. D’Amico, M. Lewandowski, L. Senatore and P. Zhang, Limits on primordial non-Gaussianities from BOSS galaxy-clustering data, arXiv:2201.11518 [INSPIRE].
[3] Baumann, D.; Nicolis, A.; Senatore, L.; Zaldarriaga, M., Cosmological Non-Linearities as an Effective Fluid, JCAP, 07, 051 (2012) · doi:10.1088/1475-7516/2012/07/051
[4] Carrasco, JJM; Hertzberg, MP; Senatore, L., The Effective Field Theory of Cosmological Large Scale Structures, JHEP, 09, 082 (2012) · Zbl 1397.83211 · doi:10.1007/JHEP09(2012)082
[5] Porto, RA; Senatore, L.; Zaldarriaga, M., The Lagrangian-space Effective Field Theory of Large Scale Structures, JCAP, 05, 022 (2014) · doi:10.1088/1475-7516/2014/05/022
[6] Carrasco, JJM; Foreman, S.; Green, D.; Senatore, L., The 2-loop matter power spectrum and the IR-safe integrand, JCAP, 07, 056 (2014) · doi:10.1088/1475-7516/2014/07/056
[7] Carrasco, JJM; Foreman, S.; Green, D.; Senatore, L., The Effective Field Theory of Large Scale Structures at Two Loops, JCAP, 07, 057 (2014) · doi:10.1088/1475-7516/2014/07/057
[8] Carroll, SM; Leichenauer, S.; Pollack, J., Consistent effective theory of long-wavelength cosmological perturbations, Phys. Rev. D, 90 (2014) · doi:10.1103/PhysRevD.90.023518
[9] Senatore, L.; Zaldarriaga, M., The IR-resummed Effective Field Theory of Large Scale Structures, JCAP, 02, 013 (2015) · doi:10.1088/1475-7516/2015/02/013
[10] Baldauf, T.; Schaan, E.; Zaldarriaga, M., On the reach of perturbative methods for dark matter density fields, JCAP, 03, 007 (2016)
[11] Foreman, S.; Perrier, H.; Senatore, L., Precision Comparison of the Power Spectrum in the EFTofLSS with Simulations, JCAP, 05, 027 (2016) · doi:10.1088/1475-7516/2016/05/027
[12] Baldauf, T.; Mercolli, L.; Zaldarriaga, M., Effective field theory of large scale structure at two loops: The apparent scale dependence of the speed of sound, Phys. Rev. D, 92 (2015) · doi:10.1103/PhysRevD.92.123007
[13] Cataneo, M.; Foreman, S.; Senatore, L., Efficient exploration of cosmology dependence in the EFT of LSS, JCAP, 04, 026 (2017) · doi:10.1088/1475-7516/2017/04/026
[14] Lewandowski, M.; Senatore, L., IR-safe and UV-safe integrands in the EFTofLSS with exact time dependence, JCAP, 08, 037 (2017) · doi:10.1088/1475-7516/2017/08/037
[15] Konstandin, T.; Porto, RA; Rubira, H., The effective field theory of large scale structure at three loops, JCAP, 11, 027 (2019) · doi:10.1088/1475-7516/2019/11/027
[16] Pajer, E.; Zaldarriaga, M., On the Renormalization of the Effective Field Theory of Large Scale Structures, JCAP, 08, 037 (2013) · doi:10.1088/1475-7516/2013/08/037
[17] Mercolli, L.; Pajer, E., On the velocity in the Effective Field Theory of Large Scale Structures, JCAP, 03, 006 (2014) · doi:10.1088/1475-7516/2014/03/006
[18] Abolhasani, AA; Mirbabayi, M.; Pajer, E., Systematic Renormalization of the Effective Theory of Large Scale Structure, JCAP, 05, 063 (2016) · doi:10.1088/1475-7516/2016/05/063
[19] Senatore, L., Bias in the Effective Field Theory of Large Scale Structures, JCAP, 11, 007 (2015) · doi:10.1088/1475-7516/2015/11/007
[20] McQuinn, M.; White, M., Cosmological perturbation theory in 1 + 1 dimensions, JCAP, 01, 043 (2016) · doi:10.1088/1475-7516/2016/01/043
[21] L. Senatore and M. Zaldarriaga, Redshift Space Distortions in the Effective Field Theory of Large Scale Structures, arXiv:1409.1225 [INSPIRE]. · Zbl 1294.83099
[22] Baldauf, T.; Mirbabayi, M.; Simonović, M.; Zaldarriaga, M., Equivalence Principle and the Baryon Acoustic Peak, Phys. Rev. D, 92 (2015) · doi:10.1103/PhysRevD.92.043514
[23] Senatore, L.; Trevisan, G., On the IR-Resummation in the EFTofLSS, JCAP, 05, 019 (2018) · Zbl 1541.85017 · doi:10.1088/1475-7516/2018/05/019
[24] Lewandowski, M.; Senatore, L., An analytic implementation of the IR-resummation for the BAO peak, JCAP, 03, 018 (2020) · Zbl 1490.83032 · doi:10.1088/1475-7516/2020/03/018
[25] Blas, D.; Garny, M.; Ivanov, MM; Sibiryakov, S., Time-Sliced Perturbation Theory II: Baryon Acoustic Oscillations and Infrared Resummation, JCAP, 07, 028 (2016) · doi:10.1088/1475-7516/2016/07/028
[26] Angulo, RE; Foreman, S.; Schmittfull, M.; Senatore, L., The One-Loop Matter Bispectrum in the Effective Field Theory of Large Scale Structures, JCAP, 10, 039 (2015) · doi:10.1088/1475-7516/2015/10/039
[27] Baldauf, T.; Mercolli, L.; Mirbabayi, M.; Pajer, E., The Bispectrum in the Effective Field Theory of Large Scale Structure, JCAP, 05, 007 (2015) · doi:10.1088/1475-7516/2015/05/007
[28] Bertolini, D.; Schutz, K.; Solon, MP; Zurek, KM, The Trispectrum in the Effective Field Theory of Large Scale Structure, JCAP, 06, 052 (2016) · doi:10.1088/1475-7516/2016/06/052
[29] Baldauf, T.; Schaan, E.; Zaldarriaga, M., On the reach of perturbative descriptions for dark matter displacement fields, JCAP, 03, 017 (2016) · doi:10.1088/1475-7516/2016/03/017
[30] Lewandowski, M.; Perko, A.; Senatore, L., Analytic Prediction of Baryonic Effects from the EFT of Large Scale Structures, JCAP, 05, 019 (2015) · doi:10.1088/1475-7516/2015/05/019
[31] Bragança, DPL, Baryonic effects in the Effective Field Theory of Large-Scale Structure and an analytic recipe for lensing in CMB-S4, JCAP, 10, 074 (2021) · Zbl 1487.85011 · doi:10.1088/1475-7516/2021/10/074
[32] Foreman, S.; Senatore, L., The EFT of Large Scale Structures at All Redshifts: Analytical Predictions for Lensing, JCAP, 04, 033 (2016) · doi:10.1088/1475-7516/2016/04/033
[33] Mirbabayi, M.; Schmidt, F.; Zaldarriaga, M., Biased Tracers and Time Evolution, JCAP, 07, 030 (2015) · doi:10.1088/1475-7516/2015/07/030
[34] Angulo, R.; Fasiello, M.; Senatore, L.; Vlah, Z., On the Statistics of Biased Tracers in the Effective Field Theory of Large Scale Structures, JCAP, 09, 029 (2015) · doi:10.1088/1475-7516/2015/09/029
[35] Fujita, T., Very Massive Tracers and Higher Derivative Biases, JCAP, 01, 009 (2020) · Zbl 1489.83088 · doi:10.1088/1475-7516/2020/01/009
[36] A. Perko, L. Senatore, E. Jennings and R.H. Wechsler, Biased Tracers in Redshift Space in the EFT of Large-Scale Structure, arXiv:1610.09321 [INSPIRE].
[37] Nadler, EO; Perko, A.; Senatore, L., On the Bispectra of Very Massive Tracers in the Effective Field Theory of Large-Scale Structure, JCAP, 02, 058 (2018) · doi:10.1088/1475-7516/2018/02/058
[38] Donath, Y.; Senatore, L., Biased Tracers in Redshift Space in the EFTofLSS with exact time dependence, JCAP, 10, 039 (2020) · Zbl 1494.83004 · doi:10.1088/1475-7516/2020/10/039
[39] McDonald, P.; Roy, A., Clustering of dark matter tracers: generalizing bias for the coming era of precision LSS, JCAP, 08, 020 (2009) · doi:10.1088/1475-7516/2009/08/020
[40] Lewandowski, M., EFT of large scale structures in redshift space, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.063526
[41] L. Senatore and M. Zaldarriaga, The Effective Field Theory of Large-Scale Structure in the presence of Massive Neutrinos, arXiv:1707.04698 [INSPIRE]. · Zbl 1294.83099
[42] de Belsunce, R.; Senatore, L., Tree-Level Bispectrum in the Effective Field Theory of Large-Scale Structure extended to Massive Neutrinos, JCAP, 02, 038 (2019) · Zbl 1541.83137 · doi:10.1088/1475-7516/2019/02/038
[43] Lewandowski, M.; Maleknejad, A.; Senatore, L., An effective description of dark matter and dark energy in the mildly non-linear regime, JCAP, 05, 038 (2017) · Zbl 1515.83391 · doi:10.1088/1475-7516/2017/05/038
[44] Cusin, G.; Lewandowski, M.; Vernizzi, F., Dark Energy and Modified Gravity in the Effective Field Theory of Large-Scale Structure, JCAP, 04, 005 (2018) · Zbl 1541.83132 · doi:10.1088/1475-7516/2018/04/005
[45] Bose, B., Towards Precision Constraints on Gravity with the Effective Field Theory of Large-Scale Structure, JCAP, 04, 063 (2018) · doi:10.1088/1475-7516/2018/04/063
[46] Assassi, V., Effective theory of large-scale structure with primordial non-Gaussianity, JCAP, 11, 024 (2015) · doi:10.1088/1475-7516/2015/11/024
[47] Assassi, V.; Baumann, D.; Schmidt, F., Galaxy Bias and Primordial Non-Gaussianity, JCAP, 12, 043 (2015) · doi:10.1088/1475-7516/2015/12/043
[48] Bertolini, D., Non-Gaussian Covariance of the Matter Power Spectrum in the Effective Field Theory of Large Scale Structure, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.123505
[49] Bertolini, D.; Solon, MP, Principal Shapes and Squeezed Limits in the Effective Field Theory of Large Scale Structure, JCAP, 11, 030 (2016) · doi:10.1088/1475-7516/2016/11/030
[50] Simonović, M., Cosmological perturbation theory using the FFTLog: formalism and connection to QFT loop integrals, JCAP, 04, 030 (2018) · Zbl 1536.83203 · doi:10.1088/1475-7516/2018/04/030
[51] D’Amico, G., The Cosmological Analysis of the SDSS/BOSS data from the Effective Field Theory of Large-Scale Structure, JCAP, 05, 005 (2020) · doi:10.1088/1475-7516/2020/05/005
[52] Colas, T., Efficient Cosmological Analysis of the SDSS/BOSS data from the Effective Field Theory of Large-Scale Structure, JCAP, 06, 001 (2020)
[53] Nishimichi, T., Blinded challenge for precision cosmology with large-scale structure: results from effective field theory for the redshift-space galaxy power spectrum, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.123541
[54] Chen, S-F; Vlah, Z.; Castorina, E.; White, M., Redshift-Space Distortions in Lagrangian Perturbation Theory, JCAP, 03, 100 (2021) · Zbl 1485.83131 · doi:10.1088/1475-7516/2021/03/100
[55] Ivanov, MM; Simonović, M.; Zaldarriaga, M., Cosmological Parameters from the BOSS Galaxy Power Spectrum, JCAP, 05, 042 (2020) · doi:10.1088/1475-7516/2020/05/042
[56] BOSS collaboration, The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample, Mon. Not. Roy. Astron. Soc.470 (2017) 2617 [arXiv:1607.03155] [INSPIRE].
[57] Zhang, P., BOSS Correlation Function analysis from the Effective Field Theory of Large-Scale Structure, JCAP, 02, 036 (2022) · doi:10.1088/1475-7516/2022/02/036
[58] Chen, S-F; Vlah, Z.; White, M., A new analysis of galaxy 2-point functions in the BOSS survey, including full-shape information and post-reconstruction BAO, JCAP, 02, 008 (2022) · doi:10.1088/1475-7516/2022/02/008
[59] Simon, T.; Zhang, P.; Poulin, V., Cosmological inference from the EFTofLSS: the eBOSS QSO full-shape analysis, JCAP, 07, 041 (2023) · doi:10.1088/1475-7516/2023/07/041
[60] Philcox, OHE; Ivanov, MM, BOSS DR12 full-shape cosmology: ΛCDM constraints from the large-scale galaxy power spectrum and bispectrum monopole, Phys. Rev. D, 105 (2022) · doi:10.1103/PhysRevD.105.043517
[61] Philcox, OHE; Ivanov, MM; Simonović, M.; Zaldarriaga, M., Combining Full-Shape and BAO Analyses of Galaxy Power Spectra: A 1.6 · doi:10.1088/1475-7516/2020/05/032
[62] D’Amico, G.; Senatore, L.; Zhang, P., Limits on wCDM from the EFTofLSS with the PyBird code, JCAP, 01, 006 (2021) · doi:10.1088/1475-7516/2021/01/006
[63] Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys.641 (2020) A6 [Erratum ibid.652 (2021) C4] [arXiv:1807.06209] [INSPIRE].
[64] G. D’Amico, Y. Donath, L. Senatore and P. Zhang, Limits on Clustering and Smooth Quintessence from the EFTofLSS, arXiv:2012.07554 [INSPIRE].
[65] Riess, AG, Large Magellanic Cloud Cepheid Standards Provide a 1 · doi:10.3847/1538-4357/ab1422
[66] W.L. Freedman et al., The Carnegie-Chicago Hubble Program. VIII. An Independent Determination of the Hubble Constant Based on the Tip of the Red Giant Branch, Astrophys. J.882 (2019) 34 [arXiv:1907.05922] [INSPIRE].
[67] Verde, L.; Treu, T.; Riess, AG, Tensions between the Early and the Late Universe, Nature Astron., 3, 891 (2019) · doi:10.1038/s41550-019-0902-0
[68] D’Amico, G.; Senatore, L.; Zhang, P.; Zheng, H., The Hubble Tension in Light of the Full-Shape Analysis of Large-Scale Structure Data, JCAP, 05, 072 (2021) · doi:10.1088/1475-7516/2021/05/072
[69] Ivanov, MM, Constraining Early Dark Energy with Large-Scale Structure, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.103502
[70] Niedermann, F.; Sloth, MS, New Early Dark Energy is compatible with current LSS data, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.103537
[71] Smith, TL, Early dark energy is not excluded by current large-scale structure data, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.123542
[72] Simon, T.; Zhang, P.; Poulin, V.; Smith, TL, Updated constraints from the effective field theory analysis of the BOSS power spectrum on early dark energy, Phys. Rev. D, 107 (2023) · doi:10.1103/PhysRevD.107.063505
[73] Cabass, G., Constraints on Single-Field Inflation from the BOSS Galaxy Survey, Phys. Rev. Lett., 129 (2022) · doi:10.1103/PhysRevLett.129.021301
[74] Cabass, G., Constraints on multifield inflation from the BOSS galaxy survey, Phys. Rev. D, 106 (2022) · doi:10.1103/PhysRevD.106.043506
[75] P. Creminelli et al., Limits on non-gaussianities from wmap data, JCAP05 (2006) 004 [astro-ph/0509029] [INSPIRE].
[76] Senatore, L.; Smith, KM; Zaldarriaga, M., Non-Gaussianities in Single Field Inflation and their Optimal Limits from the WMAP 5-year Data, JCAP, 01, 028 (2010) · doi:10.1088/1475-7516/2010/01/028
[77] F. Bernardeau and J.-P. Uzan, NonGaussianity in multifield inflation, Phys. Rev. D66 (2002) 103506 [hep-ph/0207295] [INSPIRE].
[78] D.H. Lyth, C. Ungarelli and D. Wands, The primordial density perturbation in the curvaton scenario, Phys. Rev. D67 (2003) 023503 [astro-ph/0208055] [INSPIRE].
[79] M. Zaldarriaga, Non-Gaussianities in models with a varying inflaton decay rate, Phys. Rev. D69 (2004) 043508 [astro-ph/0306006] [INSPIRE].
[80] D. Babich, P. Creminelli and M. Zaldarriaga, The Shape of non-Gaussianities, JCAP08 (2004) 009 [astro-ph/0405356] [INSPIRE].
[81] Senatore, L.; Zaldarriaga, M., The Effective Field Theory of Multifield Inflation, JHEP, 04, 024 (2012) · doi:10.1007/JHEP04(2012)024
[82] Schmittfull, M.; Vlah, Z.; McDonald, P., Fast large scale structure perturbation theory using one-dimensional fast Fourier transforms, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.103528
[83] McEwen, JE; Fang, X.; Hirata, CM; Blazek, JA, FAST-PT: a novel algorithm to calculate convolution integrals in cosmological perturbation theory, JCAP, 09, 015 (2016) · doi:10.1088/1475-7516/2016/09/015
[84] Philcox, OHE, Cosmology with the redshift-space galaxy bispectrum monopole at one-loop order, Phys. Rev. D, 106 (2022) · doi:10.1103/PhysRevD.106.043530
[85] E.E. Boos and A.I. Davydychev, A method of evaluating massive Feynman integrals, Theor. Math. Phys.89 (1991) 1052 [INSPIRE].
[86] Anastasiou, C.; Glover, EWN; Oleari, C., Scalar one loop integrals using the negative dimension approach, Nucl. Phys. B, 572, 307 (2000) · doi:10.1016/S0550-3213(99)00637-9
[87] F.V. Tkachov, A theorem on analytical calculability of 4-loop renormalization group functions, Phys. Lett. B100 (1981) 65 [INSPIRE].
[88] K.G. Chetyrkin and F.V. Tkachov, Integration by parts: The algorithm to calculate β-functions in 4 loops, Nucl. Phys. B192 (1981) 159 [INSPIRE].
[89] S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A15 (2000) 5087 [hep-ph/0102033] [INSPIRE]. · Zbl 0973.81082
[90] Remiddi, E., Differential equations for Feynman graph amplitudes, Nuovo Cim. A, 110, 1435 (1997) · doi:10.1007/BF03185566
[91] A.V. Kotikov, Differential equations method: New technique for massive Feynman diagrams calculation, Phys. Lett. B254 (1991) 158 [INSPIRE]. · Zbl 1020.81734
[92] Gehrmann, T.; Remiddi, E., Differential equations for two loop four point functions, Nucl. Phys. B, 580, 485 (2000) · Zbl 1071.81089 · doi:10.1016/S0550-3213(00)00223-6
[93] W.L. van Neerven and J.A.M. Vermaseren, Large loop integrals, Phys. Lett. B137 (1984) 241 [INSPIRE].
[94] D. Michie, “Memo” Functions and Machine Learning, Nature B21 (1968) 19.
[95] F. Bernardeau, S. Colombi, E. Gaztanaga and R. Scoccimarro, Large scale structure of the universe and cosmological perturbation theory, Phys. Rept.367 (2002) 1 [astro-ph/0112551] [INSPIRE]. · Zbl 0996.85005
[96] G. D’Amico et al., The one-loop bispectrum of galaxies in redshift space from the Effective Field Theory of Large-Scale Structure, arXiv:2211.17130 [INSPIRE].
[97] G. Passarino and M.J.G. Veltman, One Loop Corrections for e^+e^−Annihilation Into μ^+μ^−in the Weinberg Model, Nucl. Phys. B160 (1979) 151 [INSPIRE].
[98] G. ’t Hooft and M.J.G. Veltman, Scalar One Loop Integrals, Nucl. Phys. B153 (1979) 365 [INSPIRE].
[99] S. Weinzierl, The art of computing loop integrals, Fields Inst. Commun.50 (2007) 345 [hep-ph/0604068] [INSPIRE]. · Zbl 1122.81069
[100] K.T.R. Davies, G.D. White and R.W. Davies, Dispersion relations for causal Green’s functions: Derivations using the Poincare-Bertrand theorem and its generalizations, J. Math. Phys.31 (1990) 1356 [INSPIRE]. · Zbl 0711.45002
[101] Bern, Z.; Dixon, LJ; Kosower, DA, Dimensionally regulated pentagon integrals, Nucl. Phys. B, 412, 751 (1994) · Zbl 1007.81512 · doi:10.1016/0550-3213(94)90398-0
[102] G.F. Sterman, Mass Divergences in Annihilation Processes. I. Origin and Nature of Divergences in Cut Vacuum Polarization Diagrams, Phys. Rev. D17 (1978) 2773 [INSPIRE].
[103] S.B. Libby and G.F. Sterman, Jet and Lepton Pair Production in High-Energy Lepton-Hadron and Hadron-Hadron Scattering, Phys. Rev. D18 (1978) 3252 [INSPIRE].
[104] J.C. Collins, D.E. Soper and G.F. Sterman, Factorization of Hard Processes in QCD, Adv. Ser. Direct. High Energy Phys.5 (1989) 1 [hep-ph/0409313] [INSPIRE]. · Zbl 0961.81526
[105] Anastasiou, C.; Sterman, G., Removing infrared divergences from two-loop integrals, JHEP, 07, 056 (2019) · doi:10.1007/JHEP07(2019)056
[106] Caron-Huot, S.; Henn, JM, Iterative structure of finite loop integrals, JHEP, 06, 114 (2014) · Zbl 1333.81217 · doi:10.1007/JHEP06(2014)114
[107] Dubovyk, I., Evaluation of multiloop multiscale Feynman integrals for precision physics, Phys. Rev. D, 106, L111301 (2022) · doi:10.1103/PhysRevD.106.L111301
[108] A.I. Davydychev and J.B. Tausk, A magic connection between massive and massless diagrams, Phys. Rev. D53 (1996) 7381 [hep-ph/9504431] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.