×

Note on the \(q\)-logarithmic Sobolev and \(p\)-Talagrand inequalities on Carnot groups. (English) Zbl 07821476

For Carnot groups, the author proves a \(q\)-logarithmic Sobolev inequality for probability measures as a function of the Carnot-Caratheodory distance. As an application, she uses the Hamilton-Jacobi equation in the setting of Carnot groups to prove the \(p\)-Talagrand inequality and hypercontractivity. More precisely, she shows:
(a) Let \(d \lambda \) denote a measure satisfying the \(q\)-Poincaré inequality, let \(U: [0,\infty) \rightarrow [0,\infty)\) be a twice differentiable and increasing function so that \(d \mu_U= \exp(-U(d))d\lambda\) is a probability measure. Let \(d\) be the Carnot distance. Then, it holds that outside the open unit ball for \(d\), the metric \(d\) satisfies:
a) \( \vert \nabla \vert \) is bounded and there exist finite positive constants \(K,c_0\) such that \(\Delta d\leq K +U'(d)(\vert \nabla d \vert^2 -c_0)\). Then, under a) the author shows:
(i) If \(U'' \leq \beta U'\) (\(\beta >0)\) outside the unit ball for \(d\), then for any \(q \in (1,\infty)\), there exist constants \(C_q, D_q\) such that for every \(f\), \(\int \vert f\vert^q \vert U'(d)\vert d\mu_U \leq C_q \int \vert \nabla f\vert^q d\mu_U + \int \vert f\vert^q d\mu_U \).
(ii) Assume \(d\lambda\) is Lebesgue measure. Let \(1<q\leq 2, p\geq 2 \) so that \(1/p +1/q=1\). If \((G,d,\mu)\) satisfies the \(q\)-logarithmic Sobolev inequality with constant \((q-1)(\frac{q}{K})^{q-1}\) for some \(K>0\), then it also satisfies the \(p\)-Talagrand inequality with the same constant \(K\).

MSC:

60E15 Inequalities; stochastic orderings
22E30 Analysis on real and complex Lie groups
26D10 Inequalities involving derivatives and differential and integral operators
35A23 Inequalities applied to PDEs involving derivatives, differential and integral operators, or integrals
39B62 Functional inequalities, including subadditivity, convexity, etc.

References:

[1] Ané, C., Blachére, S., Chafaí, D., Fougéres, P., Gentil, I., Malrieu, F., Roberto, C. and Scheffer, G., Sur les inégalités de Sobolev logarithmiques, , Vol. 10 (Société Mathématique de France, 2000). · Zbl 0982.46026
[2] Bakry, D. and Émery, M., Diffusions hypercontractive, in Séminaire de Probabilités, XIX, , Vol. 1123 (Springer, Berlin, 1985), pp. 177-206. · Zbl 0561.60080
[3] Balogh, Z. M., Calogero, A. and Pini, R., The Hopf-Lax formula in Carnot groups: a control theoretic approach, Calc. Variations Partial Differential Equations49(3-4) (2014) 1379-1414, https://doi.org/10.1007/s00526-013-0627-3. · Zbl 1286.35241
[4] Balogh, Z. M., Engulatov, A., Hunzinker, L., Maasalo, O. E., Functional Inequalities and Hamilton-Jacobi Equations in Geodesic Spaces (Springer Science+Business Media B.V., 2011).
[5] Bobkov, S., Gentil, I. and Ledoux, M., Hypercontractivity of Hamilton-Jacobi equations, J. Math. Pures Appl.80 (2001) 669-696. · Zbl 1038.35020
[6] Bobkov, S. G. and Götze, F., Exponential integrability and transportation cost related to logarithmic Sobolev inequalities, J. Funct. Anal.163 (1999) 1-28. · Zbl 0924.46027
[7] Bobkov, S. and Ledoux, M., From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities, Geom. Funct. Anal.10(5) (2000) 1028-1052. · Zbl 0969.26019
[8] Bobkov, S. and Zegarliński, B., Entropy bounds and isoperimetry, Mem. Amer. Math. Soc.176(829) (2005) 1-69. · Zbl 1161.46300
[9] Bonfiglioli, A., Lanconelli, E. and Uguzzoni, F., Stratified Lie Groups and Potential Theory for their Sub-Laplacians, (Springer, 2007). · Zbl 1128.43001
[10] Bou Dagher, E. and Zegarliński, B., Coercive inequalities and U-bounds on step-two Carnot groups, Potential Anal. (2021) 1-24, https://doi.org/10.1007/s11118-021-09979-0.
[11] E. Bou Dagher and B. Zegarliński, Coercive inequalities on Carnot groups: Taming singularities, preprint (2021), arXiv:2105.03922 [math.FA].
[12] Bou Dagher, E. and Zegarliński, B., Coercive inequalities in higher-dimensional anisotropic Heisenberg group, Anal. Math. Phys.12(3) (2022) 1-33, https://doi.org/10.1007/s13324-021-00609-x. · Zbl 1489.53043
[13] Capogna, L., Danielli, D., Pauls, S. D. and Tyson, J., An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem, , Vol. 259 (Birkhäuser Verlag, Basel, 2007), xvi+223 pp. · Zbl 1138.53003
[14] Cattiaux, P., Guillin, A. and Wu, L. M., A note on Talagrand’s transportation inequality and logarithmic Sobolev inequality, Probab. Theory Relat. Fields148 (2010) 285-304, https://doi.org/10.1007/s00440-009-0231-9. · Zbl 1210.60024
[15] Dragoni, F., Metric Hopf-Lax formula with semicontinuous data, Discrete Contin. Dyn. Syst.17(4) (2007) 713-729. · Zbl 1122.35023
[16] Gozlan, N., A characterization of dimension free concentration in terms of transportation inequalities, Ann. Probab.37(6) (2009) 2480-2498. · Zbl 1201.60016
[17] Gozlan, N., Roberto, C. and Samson, P. M., From concentration to logarithmic Sobolev and Poincaré inequalities, J. Funct. Anal.260(5) (2010) 1491-1522. · Zbl 1226.60024
[18] Gromov, M., Carnot-Carathéodory spaces seen from within, in Sub-Riemannian Geometry, , Vol. 144 (Birkhäuser, Basel, 1996), pp. 79-323. · Zbl 0864.53025
[19] Gross, L., Logarithmic Sobolev inequalities, Amer. J. Math.97 (1975) 1061-1083. · Zbl 0318.46049
[20] Hebisch, W. and Zegarliński, B., Coercive inequalities on metric measure spaces, J. Funct. Anal.258 (2010) 814-851. · Zbl 1189.26032
[21] J. Inglis, Coercive inequalities for generators of Hörmander type, Doctor of Philosophy of the University of London and the Diploma of Imperial College, Department of Mathematics Imperial College (2010).
[22] Jerison, J., The Poincaré inequality for vector fields satisfying Hörmander’s condition, Duke Math. J.53(2) (1986) 503-523. · Zbl 0614.35066
[23] Le Donne, E., A primer on Carnot groups: homogeneous groups, Carnot-Carathéodory spaces, and regularity of their isometries, Anal. Geom. Metr. Spaces5 (2017) 116-137. · Zbl 1392.53053
[24] Ledoux, M., Concentration of measure and logarithmic Sobolev inequalities, in Séminaire de Probabilités XXXIII, , Vol. 1709 (Springer-Verlag, Berlin, 1999), pp. 120-216. · Zbl 0957.60016
[25] Ledoux, M., The Concentration of Measure Phenomenon (American Mathematical Society, Providence, 2001). · Zbl 0995.60002
[26] Lott, J. and Villani, C., Hamilton-Jacobi semigroup on length spaces and applications, J. Math. Pures Appl. (9)88(3) (2007) 219-229. · Zbl 1210.53047
[27] Marton, K., A simple proof of the blowing-up lemma, IEEE Trans. Inform. Theory32 (1986) 445-446. · Zbl 0594.94003
[28] Marton, K., Bounding d-distance by informational divergence: a method to prove measure concentration, Ann. Probab.24 (1996) 857-866. · Zbl 0865.60017
[29] Otto, F., The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations26 (2001) 101-174. · Zbl 0984.35089
[30] Otto, F. and Villani, C., Generalization of an inequality by Talagrand, and links with the logarithmic Sobolev inequality, J. Funct. Anal.173 (2000) 361-400. · Zbl 0985.58019
[31] Speight, G., Lusin approximation and horizontal curves in Carnot groups, Rev. Mat. Iberoamericana32 (2014) 1423-1444, https://doi.org/10.4171/RMI/924. · Zbl 1406.53039
[32] Stein, E., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals (Princeton University Press, Princeton, New Jersey, 1993). · Zbl 0821.42001
[33] Talagrand, M., Transportation cost for Gaussian and other product measures, Geom. Funct. Anal.6 (1996) 587-600. · Zbl 0859.46030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.